<|lI!

z/0S Communications Server

CMIP Services and ‘lopology Agent Guide

Version 1 Release 10

SC31-8828-04

<|lI!

z/0S Communications Server

CMIP Services and ‘lopology Agent Guide

Version 1 Release 10

SC31-8828-04

Note:

Before using this information and the product it supports, be sure to read the general information under

Fifth Edition (September 2008)

This edition applies to Version 1 Release 10 of z/OS (5694-A01) and to all subsequent releases and modifications
until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.
International Business Machines Corporation
Attn: z/OS Communications Server Information Development
Department AKCA, Building 501
P.O. Box 12195, 3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-1258

Send the fax to “Attn: z/OS Communications Server Information Development”

Internet e-mail:
comsvrcf@us.ibm.com

World Wide Web:
[http:/ / www.ibm.com/systems/z/0s/zos/webgs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following in your comment or note:

+ Title and order number of this document
* Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1995, 2008.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents
Figures. & . e X
Tables. e i

About thisdocument & & & . . i s e s e e e e e e e e . . XV

Who should read this document .xv
How this document is organized .Xv
How to use this document O 4 7 |

Determining whether a publication is current e 4 4

How to contact IBM service . . . O 4 4 1
Conventions and terminology used in thls document D 4 4 1
Prerequisite and related information .Xxvii
How to send your comments .. o.xd

Summaryofchanges. 0 h e e e e e e e e e e Xxiii

Part1. VTAMCMIP services
Chapter 1. Introduction to Object Orientation and CMIP services . 3
Object-Oriented view of resources . .o .3
Relationship between CMIP services and local apphcatlon programs .4
Relationship between CMIP services and remote management systems . .5
Overview of CMIP services .5
Locates objects. .6
Registers objects . .6
Coordinates traffic .7
Replicates scoped requests. .7
Filters and routes events .7
Provides security . . .9
Creates and ends associations. .9
Manages associations C e s
Manages PDUs . . . e ()
Supports all CMIP verbs and most CMIP parameters e v
Requirements for application programs .1
Types of application programs e 12
Basic application programs s I12
Subtree managers L ... I2
Create handlers . . . R K
Special considerations for manager apphcatlon programs N ¢
Special considerations for topology manager application programs.14
CMIP error handling15
General error handling . . . e £
CMIP sequencing for separate CMIP operatlons e v

Chapter 2. Sample CMIP appllcatlon program. e 1)

ACYCMSIC source file e e s 22
ACYCMS2A source file LoD
ACYCMS3A source file Lot
ACYCMS4A source file s,
ACYCMSBA source file ..3
ACYCMS6HA source file3
ACYCMS7A source fileo ..., 38

© Copyright IBM Corp. 1995, 2008 iii

Chapter 3. Overview of CMIP services APl functions4

Decisions to make before coding ey |
Common storage area storage or data space storage7 s
What form of distinguished name? . . . e
What type of application program—manager or agent7 L4

Requirements for CMIP application programs .44

Format of API messages . . . S
Description and example of the API header S
API header fields)
Description and example of the strmg . e L4
Rules for the source and destination fields in the strmg Y

Chapter 4. CMIP services API function syntax andoperands 53

Overview of API functions .53
How the functions are coded .b3
How the functions are described .h4
Completion information . . . O Y §
Synchronous and asychronous functlons SU Bb
MIBConnect—MIB connection function .b6
MIBDisconnect—MIB disconnection function .67
MIBSendCmipRequest—CMIP request function .70
MIBSendCmipResponse—CMIP response function .73
MIBSendDeleteRegistration—Deregistration function .77
MIBSendRegister—MIB asynchronous registration function79
MIBSendRequest—MIB queue request function .8
MIBSendResponse—MIB queue response function .8

Chapter 5. Read queue exitroutine87

Read queue exit routine for the CSA interface .88
VTAM reason codes (for CSA) .88
Registers upon entry (for CSA). .88
Registers upon termination (for CSA).8
Parameter list (for CSA) P <

Read queue exit routine for data space storage e e e
VTAM reason codes (for data space) .. .8
Registers upon entry (for data space). .9
Registers upon termination (for data space). .9
Parameter list (for data space) .. .9

Chapter 6. Dequeue and release routines for data space storage. 91

Format of data on data space . . . !
Dequeueing a buffer with the dequeue routme C e 2
Input to the dequeue routine L L L L L0092
Output for dequeue routine . . . C a2
Releasing a buffer with the release routme B
Input to the release routine .9
Output to the release routine .9

Chapter 7. Rules for constructing standard CMIP strings. e 1)

Overview . . .)
How application programs format data to be sent to CMIP services9
Explicit value format L L L LY
ASN.1 value format L L L LYy
MIB variable format .98
Constructed value format. L L0999
Hexadecimal BER format .100
Primitive ASN.1 data types. 1
BOOLEAN type ...
INTEGER typeo 102
ENUMERATED type.« .« .« .« .«10

iV z/0S VI1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

REAL type .

BIT STRING type .

OCTET STRING type.

NULL type . . .

OBJECT IDENTIFIER type .

Character string types

Time types .
Constructed ASN.1 types

How CMIP services sends a constructed type to an apphcatron program

SEQUENCE .
SET.
SET OF and SEQUENCE OF types
Decision types . .
CHOICE types . .
ANY DEFINED BY types
ANY types
Additional examples of how apphcatlon programs send data

Chapter 8. Examples of standard CMIP strlngs
Requests and indications
GET request—syntax . .
GET request—example request strlng
GET request—corresponding indication
ACTION request—syntax
ACTION request—example request strlng
ACTION request—corresponding indication .
Responses and confirmations . .
GET response—syntax .
GET response—example response string
GET response—corresponding confirmation .
CREATE response—syntax . .
CREATE response—example response strrng
CREATE response—corresponding confirmation.

Chapter 9. Create and delete requests.

Create requests . . .
Creating the new object requested on the create request .
Rejecting the create request. .

Creating an object different from ob]ect on the create request

Delete requests .

Deleting the object requested on the delete request
Rejecting the delete request.

Chapter 10. VTAM-specific requests and responses .
Subscribing to association information .
Syntax for the subscription strings
Examples of subscription strings .
How the subscription strings are used .
Registering an application entity .
Syntax of the registration strings .
Examples of RegisterAE strings
How the registration strings are used
Starting associations . .o
Syntax of the associate strings .
Examples of the associate strings .
How the associate strings are used .
Ending associations
Syntax of the ACE. Release and ACF Abort stnngs
Examples of the ACF.Release and ACF.Abort strings
How the ACF.Release and ACF.Abort strings are used.

. 104
. 105
. 106
. 107
. 108
. 109
. 112
. 112
. 113
. 113
. 114
. 114
. 115
. 115
. 116
. 117
. 117

121
. 122
. 122
. 122
. 122
. 123
. 123
. 123
. 124
. 124
. 124
. 124
. 125
. 125
. 126

. 129
. 129
. 129
. 129
. 130
. 130
. 130
. 130

. 133
. 133
. 133
. 134
. 135
. 135
. 136
. 136
. 136
. 136
. 137
. 137
. 137
. 137
. 138
. 138
. 138

Contents

A\

Getting association information . 138
Syntax of the GetAssociationInfo strmg . 138
Examples of the GetAssociationInfo string. . 139
How the GetAssociationInfo string is used . 139

Creating a dedicated association . . . 140

Requests and responses with the MIB preflx . . . 141
MIB.GeneralRequest, MIB.GeneralResponse, and MIB GeneralError . 141
MIB.ServiceError . Ce e . 141
MIB.ServiceAccept. . 141
MIB.Register Accept . 142

Chapter 11. Application-program-to-application-program security . . 143

Part 2. VTAM topology agent . 147

Chapter 12. Introduction to VTAM topology agent. . 149

Chapter 13. OSI object classes and VTAM resources . 151

OSI object classes . . . 151

Mapping VTAM resources to OSI ob)ect classes . . 152

Naming the objects e . 152

OSI object states . 155

Mapping VTAM status to OSI states . . 156
OSI states for VTAM resources with VTAM status . . 156
OSI states for VTAM resources without VTAM native status . 158

Chapter 14. OSI operations . . 159

Specifying OSI operatlons with CMIP verbs . . 159
GET 159
CANCEL-GET . . 160
ACTION . . 160
SET. . 160
DELETE . . 160
Other operations . 160

Responding to CMIP requests . . 161
Responding to GET ROIV messages . . 162
Responding to CANCEL-GET messages . 162
Responding to ACTION ROIV messages . 162
EVENT-REPORT, SET, and DELETE messages . 162

Monitoring resources with the ACTION(snapshot) operatlon . 163
ACTION(snapshot) request. . . . 163
ACTION(snapshot) response . . le4
ACTION(snapshot) initial data . 166
ACTION(snapshot) update data . . 167
ACTION(snapshot) update merging . . 168
ACTION(snapshot) termination . . 169

Chapter 15. VTAM topology monitoring A7

Requesting and monitoring network data (snaNetwork) . . 171
Overview. . 171
Action request . . 171
Initial data response . 172
Update data response 172
Action termination . 173
snalNetwork snapshot data (APPN data) . 174
snaNetwork snapshot data (subarea data) . . 175
snaNetwork snapshot example . . 177

Requesting and monitoring local topology (snaLocalTopo) . 183
Overview. . 183

Vi z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

Action request .

Initial data response .

Update data response

Action termination

snaLocalTopo snapshot data

snaLocalTopo snapshot example . .
Requesting and monitoring LU data (luCollect1on)

Overview.

Action request .

Initial data response .

Update data response

Action termination .

luCollection snapshot data .

luCollection (PU) snapshot example .
Monitoring resources through event reports .

Overview. . A

Management of the event reportlng env1ronrnent

Creation of the event forwarding discriminator .

Reporting events to the manager application program.

Event report data .

Event report example.

Chapter 16. Requesting specific resource data .
Requesting specific resource data (GET)
Overview. .o
GET request. . .
Network-qualified names and GET requests .
GET response
GET data. .
GET data example. .
Requesting specific resource data (loglcalUmtIndex)
Overview.
Action request .
Initial data response .
Action termination
logicalUnitIndex snapshot data
logicalUnitIndex snapshot example .

Appendix A. C language header file (ACYAPHDH).
Appendix B. ASN.1 specification of the basic CMIP strings.

Appendix C. Error codes sent by CMIP services
MIB.ServiceError error codes .
CMER VIT entry error codes .

Appendix D. VTAM CMIP services compliance with related standards and profiles
ISO standards documents .
ISO 9596-1 CMIP—Common Management Informatlon Protocol
(ISO 10164-5) OSI systems management part 5: event report function.
ISO 8650 ACSE—Association Control Service Element.
ISO 8823 presentation layer.
ISO 8825 BER—Basic Encoding Rules (BER)
ISO standards documents
DISP 11183-1, AOM 10
DISP 11183-3, AOM 12 e
AOM22]—general event report management .

Appendix E. VTAM topology agent object and attribute tables

Contents

. 185
. 186
. 187
. 188
. 190
. 195
. 204
. 204
. 205
. 205
. 206
. 208
. 208
. 209
. 212
. 212
. 213
. 213
. 214
. 214
. 216

. 219
. 219
. 219
. 219
. 221
. 222
. 223
. 223
. 224
. 224
. 224
. 225
. 226
. 226
. 227

. 229

. 239

. 263
. 263
. 296

. 299
. 299
. 299
. 299
. 299
. 299
. 299
. 300
. 300
. 300
. 300

. 301

vii

VTAM-supported objects for snapshot operations
Naming attributes for snapshot objects . .
VTAM-supported objects for snapshot responses
VTAM-supported attributes for snapshot responses.
VTAM-supported objects for GET operation .
VTAM-supported attributes for GET operation .

Appendix F. VTAM topology agent attributes definition
abmSupported .
adapterAddresses .
adapterNumbers .
ad]acenthkStatlonAddress
adjacentNodeName
adjacentNodeType.
administrativeState
allomorphs . .
appnNodeCapablhtles
appnTGcapabilities
attachedCircuitList
availabilityStatus .
cdrscRealLUname .
connectionID
connectionType.
cp-cpSessionSupport .
definitionGroupName
dependencies

dlcName .

dlurList .
dlurLocalLsAddress .
dlurName
endpointForArc

erList . .
extendedAppnNodeCapablhtles .
functionID . .
gatewayNode
gatewaySSCP
interconnectedNetids .
limitedResource .
limitedResourceTimeout .
lineType .

linkName.
linkStationRole .
luGroupMembers .
luGroupName .
luGroupSize .
luSecondName .
maxBTUsize.
nameBinding
nativeStatus . .
nere51dentNodeP01nter .
nnServerPointer
nonLocalResourceName .
nonLocalResourceType
objectClass
opEquipmentList .
opNetworkName .
operationalState
packages . .
partnerConnection.
portld .

proceduralStatus

viii z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

. 301
. 301
. 301
. 302
. 302
. 302

. 313
. 313
. 313
. 314
. 315
. 316
. 317
. 318
. 318
. 319
. 320
. 320
. 321
. 321
. 322
. 323
. 323
. 323
. 324
. 325
. 326
. 326
. 327
. 327
. 327
. 327
. 328
. 328
. 328
. 329
. 329
. 329
. 330
. 330
. 330
. 331
. 331
. 331
. 331
. 332
. 332
. 332
. 333
. 334
. 334
. 334
. 334
. 335
. 335
. 336
. 336
. 336
. 336
. 337

puName
receiveWindowSize
realSSCPname .
registeredBy .

related Adapter .
residentNodePointer .

resourceSequenceNumber .

routeAdditionResistance.
sendWindowSize .
snaNodeName .
softwareList .
subareaAddress
subarealimit
supportedResources .
sysplexInfo
tn3270ClientDnsName
tn3270ClientIpAddress
tn3270ClientPortNumber

transmissionGroupNumber .
underlyingConnectionNames .

userLabel.
unknownStatus.
usageState

Appendix G. VTAMTOPO filtering option reporting

Appendix H. Related protocol specifications .

Internet drafts .

Appendix I. Accessibility

Notices .

Policy for unsupported hardware.

Trademarks .
Bibliography.

Index .

Communicating Your Comments to IBM .

. 337
. 338
. 338
. 338
. 339
. 339
. 339
. 339
. 340
. 340
. 340
. 341
. 341
. 341
. 342
. 342
. 343
. 343
. 343
. 344
. 344
. 344
. 345

. 347

. 351

. 366

. 367

. 369

. 377
. 378

. 381

. 385

. 397

Contents

ix

X z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Figures

Using CMIP services with the common storage area interface .
Using CMIP services with the data space interface

Format of API messages

Defining a bit string field

Application-program-to- apphcatlon—program securlty

Ul W

© Copyright IBM Corp. 1995, 2008

Distinguished name composed of three relative distinguished names .

.42
.42
.. 45
. 117
. 144
. 153

xi

xil z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Tables

—_
CORPNT RN

o o 0 0 W W W W W W W WRNNNNNDNNNDNDNRE = =
PFESOXNSTERIR PO 0XNSTRDINEO00NS Tk D0

Destination and source fields in string headers. .
API functions: module entry point, type, and where to fmd more 1nformat1on
VIT entries for each API function

Valid characters for NumericString

Valid characters for PrintableString

Valid characters for GraphicString and ISO646Str1ng
Order and members of constructed types

VTAM resources mapped to OSI classes .
Object names and shorthand distinguished names .
VTAM resource status to OSI atates .

OSI states for VTAM resources without natlve status
vertex] entries for CDRM reported objects .

Resources with reason for snaLocalTopo update data
Reported resources for luCollection (host) initial data .
Reported resources for luCollection (PU) initial data
Resources with reason for luCollection (host) update data
Resources with reason for luCollection (PU) update data .
Attributes for luCollection (host) reported objects
Attributes for luCollection (PU) reported objects .
Reported resources for logicalUnitIndex data .
Attributes for logicalUnitIndex reported objects .
Supported object classes for snapshot

Naming attributes for snapshot objects .

Unique objects for snapshot response

Unique attributes for snapshot response

Supported object classes for GET .

CDRSC attribute table

Definition group attribute table

APPN end node attribute table

Interchange node attribute table

Low-entry networking node attribute table.

Logical link attribute table .

Logical unit attribute table .

LU group attribute table .

Migration data host node attribute table

APPN network node attribute table .

Port attribute table. . .

APPN registered LU attribute table .

Type 2.1 node attribute table

Type 4 node attribute table .

Type 5 node attribute table .

Connected switched PU report.

© Copyright IBM Corp. 1995, 2008

. 49
. 53
. 55

. 110
. 110
. 110
. 113
. 152
. 153
. 156
. 158
. 177
. 188
. 206
. 206
. 207
. 207
. 209
. 209
. 225
. 227
. 301
. 301
. 301
. 302
. 302
. 302
. 303
. 303
. 304
. 305
. 305
. 306
. 307
. 307
. 308
. 308
. 309
. 310
. 310
. 311
. 347

xiii

Xiv z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

About this document

This document describes programming concepts and CMIP API functions that help
application programmers write Common Management Information Protocol
(CMIP) application programs that use VTAM® CMIP services. The information in
this document supports both IPv6 and IPv4. Unless explicitly noted, information
describes IPv4 networking protocol. IPv6 support is qualified within the text.

This document supports z/OS.e.

Who should read this document

Use this document if you are planning to write a manager or agent application
program that uses VTAM CMIP services or the VTAM topology agent application
program.

Before using this document, you should be familiar with the basic concepts of
telecommunication, SNA, and VTAM. You should also be familiar with the
following:

+ C language programming

* Object-oriented terminology

* OSI network management

You should be familiar with the information in the /OS Communications Server]
New Function Summary} The k/OS Communications Server: New Function Summary
contains an overview of CMIP services and the VTAM topology agent, including
information about what these functions enable you to do and how to plan for
these functions. This document gives you the new and changed user interfaces that
enable you to use each function.

How this document is organized

This document contains the following parts and chapters:

* [Part 1, “VTAM CMIP services,” on page 1| provides reference information you
need to write CMIP application programs. It contains the following chapters:

— [Chapter 1, “Introduction to Object Orientation and CMIP services,” on page 3|

[Chapter 2, “Sample CMIP application program,” on page 19

- [Chapter 3, “Overview of CMIP services API functions,” on page 41|

— [Chapter 4, “CMIP services API function syntax and operands,” on page 53|

— [Chapter 5, “Read queue exit routine,” on page 87|

— [Chapter 6, “Dequeue and release routines for data space storage,” on page 91|

— [Chapter 7, “Rules for constructing standard CMIP strings,” on page 95|

— [Chapter 8, “Examples of standard CMIP strings,” on page 121

— [Chapter 9, “Create and delete requests,” on page 129

— [Chapter 10, “VTAM-specific requests and responses,” on page 133]

— [Chapter 11, “Application-program-to-application-program security,” on page
143

» [Part 2, “VTAM topology agent,” on page 147 explains what VTAM topology
agent sends across the CMIP interface. It contains the following chapters:

© Copyright IBM Corp. 1995, 2008 XV

— [Chapter 12, “Introduction to VTAM topology agent,” on page 149
— [Chapter 13, “OSI object classes and VTAM resources,” on page 151|
— [Chapter 14, “OSI operations,” on page 159|

- [Chapter 15, “VTAM topology monitoring,” on page 171]

— [Chapter 16, “Requesting specific resource data,” on page 219

* The appendixes provide information that you might find helpful. This document
contains the following appendixes:

[Appendix A, “C language header file (ACYAPHDH),” on page 229|
— |Appendix B, “ASN.1 specification of the basic CMIP strings,” on page 239

— [Appendix C, “Error codes sent by CMIP services,” on page 263

— |Appendix D, “VTAM CMIP services compliance with related standards and|
rofiles,” on page 299

~ |[Appendix E, “VTAM topology agent object and attribute tables,” on page 301|

- [Appendix F, “VTAM topology agent attributes definition,” on page 313
- [Appendix G, “VTAMTOPO filtering option reporting,” on page 347]

— "Related protocol specifications (RFCs)" lists the related protocol specifications
for TCP/IP.

— "Accessibility" describes accessibility features to help users with physical
disabilities.

— "Notices" contains notices and trademarks used in this document.

- "Bibliography" contains descriptions of the documents in the z/OS®
Communications Server library.

How to use this document

xvi

To use this document, you should be familiar with the basic concepts of
telecommunications, SNA, and VTAM.

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For
a given publication, updates to the hardcopy and associated BookManager®
softcopy are usually available at the same time. Sometimes, however, the updates
to hardcopy and softcopy are available at different times. The following
information describes how to determine if you are looking at the most current
copy of a publication:

* At the end of a publication’s order number there is a dash followed by two
digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the
publication order number GC28-1747-07, the dash level 07 means that the
publication is more current than previous levels, such as 05 or 04.

* If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

* To compare softcopy publications, you can check the last two characters of the
publication’s file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

How to contact IBM service

For immediate assistance, visit this Web site: |http:/ /www.software.ibm.com /|
network /commserver/support/|

Most problems can be resolved at this Web site, where you can submit questions
and problem reports electronically, as well as access a variety of diagnosis
information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).
You will receive a return call within 8 business hours (Monday — Friday, 8:00 a.m.
—5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or
your authorized IBM supplier.

If you would like to provide feedback on this publication, see[“Communicating]
[Your Comments to IBM” on page 397|

Conventions and terminology used in this document

Commands in this book that can be used in both TSO and z/0S UNIX®

environments use the following conventions:

* When describing how to use the command in a TSO environment, the command
is presented in uppercase (for example, NETSTAT).

* When describing how to use the command in a z/OS UNIX environment, the
command is presented in bold lowercase (for example, netstat).

¢ When referring to the command in a general way in text, the command is
presented with an initial capital letter (for example, Netstat).

All of the exit routines described in this document are installation-wide exit routines.
You will see the installation-wide exit routines also called installation-wide exits,
exit routines, and exits throughout this document.

The TPF logon manager, although shipped with VTAM, is an application program.
Therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a
sample carefully before applying it to your system.

For definitions of the terms and abbreviations used in this document, you can view
the latest IBM terminology at [the IBM Terminology Web site}

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:
Note Supplemental detail
Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure

Rule Something you must do; limitations on your actions

About this document ~ XVii

http://www.software.ibm.com/network/commserver/support/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/software/globalization/terminology/index.jsp

Restriction
Indicates certain conditions are not supported; limitations on a product or
facility

Requirement
Dependencies, prerequisites

Result Indicates the outcome

Prerequisite and related information

z/0S Communications Server function is described in the z/0OS Communications
Server library. Descriptions of those documents are listed in [“Bibliography” on|
page 381 [in the back of this document.

Required information

™

Before using this product, you should be familiar with TCP/IP, VTAM, MVS", and
UNIX System Services.

Softcopy information

Softcopy publications are available in the following collections.

Titles Order Description
Number

z/OS V1R10 Collection SK3T-4269 This is the CD collection shipped with the z/OS product. It includes
the libraries for z/OS V1R10, in both BookManager and PDF
formats.

z/OS Software Products SK3T-4270 This CD includes, in both BookManager and PDF formats, the

Collection libraries of z/OS software products that run on z/OS but are not
elements and features, as well as the Getting Started with Parallel
Sysplex® bookshelf.

z/OS V1R10 and Software SK3T-4271 This collection includes the libraries of z/OS (the element and

Products DVD Collection feature libraries) and the libraries for z/OS software products in

both BookManager and PDF format. This collection combines
SK3T-4269 and SK3T-4270.

z/OS Licensed Product Library | SK3T-4307 This CD includes the licensed documents in both BookManager and
PDF format.

IBM System z" Redbooks SK3T-7876 The Redbooks® selected for this CD series are taken from the IBM

Collection Redbooks inventory of over 800 books. All the Redbooks that are of

interest to the zSeries® platform professional are identified by their
authors and are included in this collection. The zSeries subject areas
range from e-business application development and enablement to
hardware, networking, Linux®, solutions, security, parallel sysplex,
and many others.

Other documents

For information about z/OS products, refer to z/OS Information Roadmap
(SA22-7500). The Roadmap describes what level of documents are supplied with
each release of z/OS Communications Server, as well as describing each z/0OS
publication.

xviil z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA

documents.

The following table lists documents that might be helpful to readers.

Title

Number

DNS and BIND, Fifth Edition, O'Reilly and Associates, 2006

ISBN 0-596-00157-4

Routing in the Internet , Christian Huitema (Prentice Hall PTR, 1995)

ISBN 0-13-132192-7

sendmail, Bryan Costales and Eric Allman, O'Reilly and Associates, 2002

ISBN 1-56592-839-3

SNA Formats

GA27-3136

TCP/IP Illustrated, Volume I: The Protocols, W. Richard Stevens, Addison-Wesley
Publishing, 1994

ISBN 0-201-63346-9

TCP/IP Illustrated, Volume 1I: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63354-X

TCP/IP Illustrated, Volume I1I, W. Richard Stevens, Addison-Wesley Publishing, 1995

ISBN 0-201-63495-3

TCP/IP Tutorial and Technical Overview GG24-3376
Understanding LDAP S5G24-4986
z/OS Cryptographic Services System SSL Programming 5C24-5901

z/OS Integrated Security Services LDAP Client Programming 5C24-5924
z/OS Integrated Security Services LDAP Server Administration and Use 5C24-5923
z/OS JES2 Initialization and Tuning Guide SA22-7532
z/OS Problem Management G325-2564
z/OS MV'S Diagnosis: Reference GA22-7588
z/OS MVS Diagnosis: Tools and Service Aids GA22-7589
z/OS MVS Using the Subsystem Interface SA22-7642
z/OS Program Directory GI10-0670

z/OS UNIX System Services Command Reference SA22-7802
z/OS UNIX System Services Planning GA22-7800
z/OS UNIX System Services Programming: Assembler Callable Services Reference SA22-7803
z/OS UNIX System Services User’s Guide SA22-7801

z/OS XL C/C++ Run-Time Library Reference SA22-7821

System z9 and zSeries OSA-Express Customer’s Guide and Reference SA22-7935

Redbooks
The following Redbooks might help you as you implement z/OS Communications
Server.

Title Number

Communications Server for z/OS VIR9 TCP/IP Implementation, Volume 1: Base 5G24-7532

Functions, Connectivity, and Routing

Communications Server for z/OS VIR9 TCP/IP Implementation, Volume 2: Standard SG24-7533

Applications

Communications Server for z/OS VIR9 TCP/IP Implementation, Volume 3: High S5G24-7534

Availability, Scalability, and Performance

About this document

Xix

Title Number
Communications Server for z/OS VIR9 TCP/IP Implementation, Volume 4: Security and | SG24-7535
Policy-Based Networking

IBM Communication Controller Migration Guide S5G24-6298
IP Network Design Guide 5G24-2580
Managing 0S/390° TCP/IP with SNMP 5G24-5866
Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender 5G24-5957
SecureWay® Communications Server for 0S/390 V2R8 TCP/IP: Guide to Enhancements 5G24-5631
SNA and TCP/IP Integration 5G24-5291
TCP/IP in a Sysplex 5G24-5235
TCP/IP Tutorial and Technical Overview GG24-3376
Threadsafe Considerations for CICS 5G24-6351

Information APARs and technotes

Updates to previous editions of the documents that are in the z/OS
Communications Server library are in the form of Information APARs or technotes.

To view Information APARs and technotes for z/OS Communications Server or to
use them to solve a problem that you are having go to |http://www.ibm.com/|
lsoftware /network /commserver/zos/support. An index to z/OS Communications
Server book updates is at|http:/ /www.ibm.com/support/|
[docview.wss?uid=swg21178966| You can also find Information APARs for z/OS
documentation in z/OS and z/OS.e DOC APAR and PTF ++HOLD Documentation at
http:/ /publibz.boulder.ibm.com/ cgi-bin /bookmegr 0S390/ BOOKS/ZIDOCMST /|
CCONTENTS

Where to find related information on the Internet
z/OS

This site provides information about z/OS Communications Server release
availability, migration information, downloads, and links to information
about z/OS technology

http:/ /www.ibm.com /systems/z/0s/zo0s /|

z/OS Internet Library

Use this site to view and download z/0OS Communications Server
documentation

fwww.ibm.com /systems /z/0s/zos/bkserv /|

IBM Communications Server product

The primary home page for information about z/OS Communications
Server

|http: / /www.software.ibm.com/network/commserver/ |

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS
Communications Server knowledge base for Technotes, FAQs, white
papers, and other z/OS Communications Server information

http:/ /www.software.ibm.com /network /commserver /support/|

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

http://www.ibm.com/software/network/commserver/zos/support
http://www.ibm.com/software/network/commserver/zos/support
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/ZIDOCMST/CCONTENTS
http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/

IBM Systems Center publications

Use this site to view and order Redbooks, Redpapers, and Technotes

http:/ /www.redbooks.ibm.com /|

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes,
presentations, Technotes, FAQs, white papers, Customer Support Plans,
and Skills Transfer information)

lhttp:/ /www.ibm.com /support/techdocs /atsmastr.nsf]

RFCs

Search for and view Request for Comments documents in this section of
the Internet Engineering Task Force Web site, with links to the RFC
repository and the IETF Working Groups Web page

http:/ /www.ietf.org /rfc.htm]|

Internet drafts

View Internet-Drafts, which are working documents of the Internet
Engineering Task Force (IETF) and other groups, in this section of the
Internet Engineering Task Force Web site

http:/ /www.ietf.org /ID.html]

Information about Web addresses can also be found in information APAR 1111334.

Note: Any pointers in this publication to Web sites are provided for convenience
only and do not in any manner serve as an endorsement of these Web sites.

DNS Web sites

For more information about DNS, see the following USENET news groups and
mailing addresses:

USENET news groups
comp.protocols.dns.bind

BIND mailing lists
http:/ /www.isc.org /ml-archives /|

BIND Users
* Subscribe by sending mail to bind-users-request@isc.org.

* Submit questions or answers to this forum by sending mail to
bind-users@isc.org.
BIND 9 Users (This list might not be maintained indefinitely.)
* Subscribe by sending mail to bind9-users-request@isc.org.

* Submit questions or answers to this forum by sending mail to
bind9-users@isc.org.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this document or any
other z/OS Communications Server documentation, do one of the following:

About this document ~ XX1

http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.isc.org/ml-archives/

* Go to the z/OS contact page at http://www.ibm.com/systems/z/0s/zos/|
You can enter and submit your comments in the form provided at
this Web site.

* Send your comments by e-mail to comsvrcf@us.ibm.com. Be sure to include the
name of the document, the part number of the document, the version of z/OS
Communications Server, and, if applicable, the specific location of the text that
you are commenting on (for example, a section number, a page number or a
table number).

xxil z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html

Summary of changes

Summary of changes
for SC31-8828-04
z/OS Version 1 Release 10

This document contains information previously presented in SC31-8828-03, which
supports z/OS Version 1 Release 7. There are no technical or editorial updates in
this version of the document.

Summary of changes
for SC31-8828-03
z/OS Version 1 Release 7

This document contains information previously presented in SC31-8828-02, which
supports z/OS Version 1 Release 5.

The information in this document includes descriptions of support for both IPv4
and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol
support concern IPv4. IPv6 support is qualified within the text.

New information

Support for model CDRSCs

* CDRSCs created from models are reported in topology but the models
themselves are not.

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

You may notice changes in the style and structure of some content in this
document—for example, headings that use uppercase for the first letter of initial
words only, and procedures that have a different look and format. The changes are
ongoing improvements to the consistency and retrievability of information in our
documents.

Summary of changes
for SC31-8828-02
z/OS Version 1 Release 5

This document contains information previously presented in SC31-8828-01, which
supports z/OS Version 1 Release 2. The information in this document supports
both IPv6 and IPv4. Unless explicitly noted, information describes IPv4 networking
protocol. IPv6 support is qualified within the text.

New information

+ luCollection data example for IPv6 address, see|“luCollection (PU) snapshot]
[example” on page 209

Changed information

© Copyright IBM Corp. 1995, 2008 xxiii

* connectionIDs for Enterprise Extender connections (both in port objects and
logicalLink objects) include support for IPv6 addresses. See [“connectionID” on|

* tn3270ClientIpAddress syntax includes support for IPv6 addresses, see
[“n3270ClientIpAddress” on page 343]

This document contains terminology, maintenance, and editorial changes. Technical
changes or additions to the text and illustrations are indicated by a vertical line to
the left of the change.

Starting with z/OS V1R5, you may notice changes in the style and structure of
some content in this document—for example, headings that use uppercase for the
first letter of initial words only, and procedures that have a different look and
format. The changes are ongoing improvements to the consistency and
retrievability of information in our documents.

XXiv z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

Part 1. VTAM CMIP services

© Copyright IBM Corp. 1995, 2008

2 z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 1. Introduction to Object Orientation and CMIP
services

VTAM Common Management Information Protocol (CMIP) services provides an
open, standards-based access for network and systems management. Application
programmers can use CMIP services to code manager and agent application
programs to aid in systems management.

In pre-V4R3 releases of VTAM without CMIP, network application programs, such
as the NetView® program, are frequently limited by two restrictions:

¢ They rely on the VTAMLST data set for information about the location of
resources within the network.

The VTAMLST data set gives an incomplete picture of the network because
VTAMLST includes only resources that are pre-defined. It does not include
APPN or subarea resources that are dynamically defined.

* They must reside with VTAM on the host.

Because topology information cannot be gathered and sent to the NetView
program at a remote location, the NetView program must reside with VTAM on
the host.

With CMIP these two restrictions no longer apply for topology management. The
VTAM topology agent is a part of VTAM that functions as a CMIP application
program. Together with a manager application program, such as the NetView
program, the topology agent provides data for the management of APPN and
subarea topology. For a description of the VTAM topology agent, refer to

[Chapter 12, “Introduction to VTAM topology agent,” on page 149] A manager
application program is any CMIP application program that sends requests to other
objects. An agent application program is any CMIP application program that
processes requests from other objects.

You can write your own manager or agent application program by using the CMIP
services application program interface (API). These application programs are not
restricted to system management, VTAM, or SNA resources. For example, you can
write an agent application program for the MVS system.

Object-Oriented view of resources

CMIP network management uses an object-oriented view of the resources in the
network to simplify management.

This object-oriented system emphasizes the common properties of resources and
reduces the requirement for a manager application program to understand all
details of every type of resource in the network. Information about different
network resources are represented by agent application programs in a common
language, composed of CMIP strings. Manager application programs use this
common language to communicate with agent application programs.

A user of a network management program issues commands to a manager

application program, which sends CMIP requests to a network resource. Resources
are represented by agent application programs, which accept the request and build

© Copyright IBM Corp. 1995, 2008 3

information about the network resource in the form of a CMIP response. The CMIP
response is returned to the manager application program.

In VTAM CMIP services, managed network resources are called objects. An object is
an instance of one or more classes. A CMIP class describes a type of resource in the
network and specifies the properties that are common to instances of the class.

A CMIP class is described in GDMO templates. These templates are sets of
declarations written in the GDMO language that describe one or more classes. The
descriptions include properties of the objects in that class, such as:

* How the object is named

* What types of requests are valid for this object

* What attributes (characteristics) describe this object

Inheritance is the mechanism used in object-oriented systems to simplify
interactions with objects by emphasizing common properties. A class can inherit
characteristics or traits from one or more other classes. To inherit means to have all
behaviors of another class. The class that inherits is a subclass of the class it
inherits from. The class that is inherited from is the superclass of the class that
inherits from it.

A subclass has all the behaviors of its superclass because it inherits from the
superclass. In addition, a subclass has unique behaviors of its own.

Relationship between CMIP services and local application programs

4

Local application programs are CMIP application programs that reside with CMIP
services on the host.

Local agent and manager CMIP application programs use character strings to
represent requests and responses that flow between manager application programs
and agent application programs.

The formats of CMIP requests and responses are described by syntaxes that are
written in the ASN.1 language. The ASN.1 language describes data formats.

All requests and responses sent between CMIP services and local application
programs are EBCDIC strings formatted according to string syntaxes written in the
ASN.1 language, as shown in this simple syntax example:
StringA ::= SEQUENCE
{ level INTEGER,
id CHARACTER
}

The syntax in the example is the rule for building a string of type StringA. Using
that syntax and the ASN.1 standard, an application program can build a string of
type StringA.

The following strings are examples of StringA strings:
(Tevel 5, id 'A')

(Tevel 1355, id 'Z')

(1244, M)

For more information on interpreting ASN.1 syntaxes, refer to |[Chapter 7, “Rules for|
lconstructing standard CMIP strings,” on page 95.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Relationship between CMIP services and remote management systems

When CMIP requests and responses flow through the network, they are encoded in
a hardware-independent format. CMIP services is available on machines with
different word sizes (16-bit and 32-bit, for example) and different character string
representations (ASCII and EBCDIC). This is hidden from application programs
and from CMIP services because CMIP services encodes data from native format to
a common format when it sends data across the network. It decodes data from the
common format to native format when it receives data from the network.

Basic Encoding Rules (BER) is the common format that is used to encode CMIP
information as it flows through the network. BER is not used between local agent
application programs and manager application programs.

Overview of CMIP services

VTAM CMIP services is designed to provide information through VTAM to
network and systems management application programs that conform to the OSI
standards for systems management. CMIP services provides application writers a
set of common functions that can be used to create CMIP agent and manager
application programs more quickly than would otherwise be possible.

The relationship between CMIP agent and manager application programs is
defined by the International Standards Organization (ISO) in terms of a managing
system and a managed system. The managing system is the CMIP manager
application program and the managed system is the CMIP agent application
program.

With the functions provided by CMIP services, application programmers can write
application programs that monitor resources in a network. Through CMIP services,
a topology agent application program sends information about resources in the
network to a topology manager application program that analyzes and displays the
resources.

The VTAM topology agent, which resides on the VTAM host, is an agent
application program that collects topology information to send to a manager
application program through CMIP services. For information about the VTAM
topology agent, refer to [Chapter 12, “Introduction to VTAM topology agent,” on|
Communication between the manager and agent application programs
that are on different systems is over APPC sessions using Open System
Interconnection (OSI) Common Management Information Protocol (CMIP) and
Systems Network Architecture (SNA). For more information on CMIP over SNA,
refer to IBM SystemView® Mapping of OSI Upper Layers to MDS for CMIP over SNA
for APPN and SNA Subarea Management.

CMIP services enables communication between application programs by
performing several functions for the application programs. The following sections
describe these CMIP services tasks:

* Locates objects

* Registers objects

* Coordinates traffic

* Replicates scoped requests

* Filters events and routes them to manager application programs

* Provides security

* Creates and ends associations

* Manages associations

Chapter 1. Introduction to Object Orientation and CMIP services 5

6

* Manages protocol data units (PDUs)
e Supports CMIP verbs and parameters

Locates objects

CMIP services allows your application program to target CMIP requests to local or
remote objects without knowing where the objects reside, what their application
entity titles are, or what their associations are. The directory resolves the object
locations. Application programs can use the same code for local objects and for
remote objects.

CMIP services maps an object instance, represented by its distinguished name, to
the application entity title of the application entity that can be used to contact that
object instance.

CMIP services performs the following tasks:

* Maps distinguished names to application entity titles by using a locally defined
directory and either of the following methods:

— Mappings (as defined by either the ACYDDF member of the SYS1.SISTCMIP
data set or a CMIP algorithm) for distinguished names of specific formats to
the application entity title that represents the distinguished name.

— User-defined mappings for distinguished names of specific formats to the
application entity title that represents the distinguished name and from
application entity title to session address. See |z/OS Communications Server]
SNA Network Implementation Guide and /OS Communications Server: SNA|
Resource Definition Referencd for more information about user-defined
mappings.

* Maps names to application entity titles by using a locally defined directory.

CMIP application programs can rely on CMIP services to provide this mapping.
The application programs address the objects by their distinguished names only.

Only one mapping is allowed. You cannot define more than one application entity
title for each distinguished name and cannot target more than one target system
per application entity title.

Registers objects

CMIP services supports both manager and agent application programs. Any
application program can act as both manager and agent. Each application program
must have at least one object that it registers with CMIP services.

VTAM implements an instance of a system object defined by ISO/IEC 10165-2. The
system object can be used by an application program to register subordinate
objects if the name binding defined for the subordinate objects allows this. CMIP
services provides the distinguished name of the local system object on return from
the MIBConnect function (the CMIP services connection function) so that
application programs can register subordinate objects to this system.

This distinguished name is especially useful if you are registering objects that are
in the managerApplication class. Any application program choosing not to register
under this system object can either register its own root object or can register
under any currently registered object. CMIP services does not accept registration
under non-existent managed objects. Instances can be registered under directory
objects, which are created dynamically, or they can be registered under the root
object.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

The local system object is created when VTAM CMIP services is initialized and is
therefore registered so long as VTAM CMIP services is active. As a result, this
object provides a predictable, reliable anchor for creating and registering objects. It
is highly recommended that event filter discriminator (EFD) objects be created
under this system object. EFD objects are described in more detail under |”Fi1ters|
and routes events”|and [“Special considerations for topology manager application|
programs” on page 14/

CMIP services verifies proper names for object instances during object registration.

Because CMIP services is the only function that is aware of the tree structure for
naming object instances, it processes scoped requests by replicating the incoming
message for each object in the subtree specified by the scoping criteria. It does not
filter messages.

When an object with multiple name bindings registers, CMIP services assigns it the
first name binding it finds.

Coordinates traffic

CMIP services coordinates CMIP traffic within a local system. It includes an
application program interface (API) and a management information base (MIB).

The MIB includes objects. CMIP services allows the local MIB to be used by several
application programs. Each application program can implement one or more
objects that comprise the MIB. The complete MIB is made up of all of the objects
registered by the application programs. The CMIP application programs that use
the MIB are called the agents or managers for the system.

Manager application programs do not have to understand where objects are
located because VTAM directs the requests to the objects. Responses are matched
with the requests and returned to the originator.

Replicates scoped requests

Requests that affect several application programs (or objects) within a particular
scope are called scoped requests. Scoped requests are coordinated such that CMIP
services provides the appropriate end responses when the affected objects have
responded. CMIP services replicates scoped requests and directs them to the
objects within each application program that fall within the scope of the request.
Manager application programs on CMIP services can rely on CMIP services to find
the base affected objects and deliver the request to the system containing that base
object. At the receiving system, CMIP services delivers copies of the request to
each affected object, coordinates the responses, and forwards the responses.

Filters and routes events

CMIP services filters events to forward them to any manager application programs
that have indicated they want to see these events. The event reports contain
information sent by a managed object relating to an event that has occurred within
the managed object, such as a threshold violation or a change in configuration
status.

Notifications are the conceptual messages that are sent by object instances to CMIP
services. They do not have a destination initially. Notifications are specified using
the notification syntax contained in[Appendix B, “ASN.1 specification of the basid
[CMIP strings,” on page 239 These messages are processed by CMIP services and if

Chapter 1. Introduction to Object Orientation and CMIP services 7

8

there is an EFD object with a filter that matches that notification, they are
converted into event reports that contain destinations.

In the case of inbound event reports destined for OSISMASE from CMIP services
on products other than VTAM, CMIP services filters and routes event reports so
that they can be forwarded to specific objects within the local system or to remote
systems.

OSISMASE is the default application entity title for CMIP services. For
information about OSISMASE, refer to IBM SystemView Mapping of OSI Upper
Layers to MDS for CMIP over SNA for APPN and SNA Subarea Management. Inbound
event reports targeted at application entities other than OSISMASE are routed
directly to the object that registered the application entity.

VTAM CMIP services does not allow the creation of EFDs that reside in VTAM to
specify OSISMASE as a destination. CMIP services on other products might allow
OSISMASE as a destination.

Object instances do not have to be aware of destinations and filters for events
because CMIP services does that.

CMIP services receives all notifications that are either sent by local object instances
or received from other systems. CMIP services compares their attributes against
matching criteria specified in each instance of the EFD managed object. For each
EFD, if no match is found, the message is discarded. If a match is found, the
destination specified in the event forwarding discriminator is attached to the
message and it is processed further. The notification is converted to an
unconfirmed event report. If eventTime was provided in the notification, it is
copied to the event report, otherwise an eventTime is generated and included. The
event report is sent to each destination in the destination list.

For a description of how a manager application program creates EFDs, refer to
[“Special considerations for topology manager application programs” on page 14|

CMIP services performs a set of functions common to all members of the EFD
object class.

It also performs the functions defined in the IBM EFD subclass for allomorphic
behavior of events. These functions are defined in IBM SystemView Managed
Resource Model Reference and Templates, Volume 1: Generic Definitions. To support this
additional behavior, each object instance that sends notifications must use the
notification syntax to include with each notification the set of allomorphic
superclasses that the object instance supports.

Confirmed event reports are not supported. When CMIP services receives a
confirmed notification or a confirmed event report, CMIP services builds an ROER
processing failure with no specific information.

EFD attributes that specify scheduling are ignored.

Objects can choose to register as individual application entities. If an application
program registers as an application entity, then any event reports destined for that
application entity are forwarded directly to that application program. Any event
reports destined for the default application entity (OSISMASE) are routed to the
local CMIP services. The creation of EFDs with a destination of OSISMASE is not
valid and might be rejected by CMIP services.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

To learn about registering application entity titles, refer to[“Registering an|
lpplication entity” on page 135

Provides security

CMIP services provides two kinds of security. One kind of security is between
association partners. It verifies that association partners have proper authorization
to be in communication with each other. This kind of security defines which
manager and agent application programs can communicate with each other. The
system administrator controls this access by defining either only those partners
that are allowed to request management functions or those that are to be
specifically excluded. Wildcards and defaults can be used.

See [z/0S Communications Server: SNA Network Implementation Guide and [z/OS|
(Communications Server: SNA Resource Definition Reference|for more information about
this type of security.

The other kind of security is across the APIL. The API security restricts access to
application program that are not authorized to act as manager application
programs or agent application programs. This security is implemented by a
password, similar to the passwords used by traditional VTAM application
programs.

For information about where the password is passed to the MIBConnect function,
refer to [MIBConnect—MIB connection function” on page 56.

Creates and ends associations

An association is a logical connection between CMIP services on this host and
CMIP services on another node or between CMIP services on this host and itself.
An association between CMIP services on this host and itself is a local association.
An association between CMIP services on this host and CMIP services on another
node is a remote association.

Creating associations
Associations can be created in two ways:

* CMIP services can establish the association when it recognizes the need for one.

* An application program can establish an association with the ACF.Associate
request, which is described under [“Starting associations” on page 136,

Ending associations
An association can be ended by several methods:

* An application program can issue the ACF.Abort or ACF.Release request.
e CMIP services can end the association if it has been idle for 2 hours.

* The VTAM limited resources function (selective termination of idle LU 6.2
[APPC] sessions) sessions, can cause an association to be ended. For a
description of the effect of selective termination on associations, refer to
[“Creating a dedicated association” on page 140)

Manages associations

CMIP services chooses the association across which to carry a particular message
unless the application program overrides the default association by specifying an
association on the MIBSendRequest function or the MIBSendCmipRequest function.

Chapter 1. Introduction to Object Orientation and CMIP services 9

10

CMIP services chooses the association based on the type of message, the
application context tied to the association, and the destination of the message.
CMIP services enforces the application context against inbound messages.

It controls the minute-by-minute operations of associations by:

¢ Determining the type of the message and routing it to the correct element of
CMIP services

* Maintaining the capabilities of the associations that exist
* Negotiating the capabilities of the associations
* Determining the correct association for a message

* Initiating an association for messages that are directed to object instances located
on systems with which there are no associations

* Establishing a default association for messages that are directed to object
instances on the local system

* Allowing local objects or application programs to monitor the state of
associations

* Routing incoming messages to the correct function within CMIP services

CMIP services establishes associations. When establishing associations, it negotiates
the application context to be used for that association. It ensures that the
parameters are correct.

To ensure secure associations, VTAM CMIP services checks the directory definition
file to see whether data-encryption-standard (DES)-based security or
application-program-to-application-program security is in effect.

For an overview of the security function in VTAM CMIP services, refer to
[Chapter 11, “Application-program-to-application-program security,” on page 143
See |z/0S Communications Server: SNA Network Implementation Guiddand /09
[Communications Server: SNA Resource Definition Reference|for a description of the
directory definition file.

Manages PDUs

As a service to local application programs, CMIP services determines whether
protocol data units (PDUs) are properly formed and exchanged in the proper
order. This service frees application programs from having to verify the PDUs
themselves.

A PDU can have several types of errors. These include:
* A value is out of the legal range for the data type. The message is rejected.

* A tag is unrecognized in a SET value or SEQUENCE value. The message is
rejected.

If a PDU suffers from several of these errors at one time, the most severe errors are
processed first. When the message fails to be decoded, CMIP services tries to
decode the Remote Operations Service Element (ROSE) header for the message. If
the header can be decoded, the message is rejected.

In some cases, if the header cannot be decoded, the association is ended. This
should not happen unless the message is totally destroyed.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

CMIP services understands the messages that are exchanged with object instances.
It maintains the list of outstanding requests that require replies and enforces that
the CMIP strings it receives are correct.

CMIP services does not always ensure that duplicate linked-replies are not
received.

Supports all CMIP verbs and most CMIP parameters

VTAM CMIP services supports the CMIP syntaxes as documented in
[“ASN.1 specification of the basic CMIP strings,” on page 239 with certain
exceptions. CMIP services supports all CMIP verbs:

* EVENT-REPORT

* GET

* SET

+ ACTION

* CREATE

* DELETE

* CANCEL-GET

VTAM CMIP services does not support atomic synchronization. If atomic
synchronization is specified, the CMIP request is responded to with a
syncNotSupport error. VTAM CMIP services does not support the EFD scheduling
attributes.

Requirements for application programs

As described in previous sections, VTAM CMIP services provides many services
that free application programs from having to code many of the common CMIP
functions. The application program is therefore allowed to focus on functions
specific to the object instances it represents. The application program implements
the behavior of its objects. It must:

* Code an APPL definition statement to define the application program to VTAM.
See |z/OS Communications Server: SNA Resource Definition Reference|for information
about the APPL definition statement.

* Connect to VTAM CMIP services using the MIBConnect function. When using
the MIBConnect function, the application program must provide the address of
its read queue exit routine. The read queue exit routine is required for
application programs to communicate with CMIP services.

It is highly recommended that you code a TPEND exit routine for VTAM to
invoke when VTAM is terminating. If you code a TPEND exit routine, you must
provide its address.

* Register at least one object instance using the MIBSendRegister function. An
application program can register as many object instances as it represents. An
object instance cannot be registered by more than one application program.

* Implement the behavior of the object instances it represents. CMIP services does
not provide a repository for object attributes. Any CMIP operations targeting an
object instance are delivered to the application program that registered that
instance (or, in the case of a subtree manager, the application program that
registered the subtree containing that instance).

For example, a CMIP GET request is forwarded to the application program
representing the objects targeted in the request. Those application programs are
responsible for collecting the requested attributes, building them into the proper
response, and sending them using the MIBSendCmipResponse function.

Chapter 1. Introduction to Object Orientation and CMIP services 11

For scoped requests that affect object instances across multiple application
programs, no coordination is needed between the application programs. CMIP
services coordinates the requests for the application program. Your application
program simply indicates that it has finished its part of the response by setting
the last-in-chain attribute when invoking the MIBSendCmipResponse function.
For hints on coding subtree managers refer to [“Subtree managers.”| An
application program can be both a manager and an agent, but it is helpful to

separate them for the following discussion under |[“Types of application|
—

* Issue the MIBDisconnect function to disconnect the application from CMIP
services.

Types of application programs

12

Different types of agent application programs have different rights and
responsibilities. These types are defined by the capabilities that are requested when
an object instance is registered. These types are:

* Basic application program, with no special capabilities

* Subtree manager application program

* Create handler application program

Basic application programs

A basic application program is one that represents one or more object instances, all
of which are registered to CMIP services. The registering allows CMIP services to
provide the most service because it can scope requests to each affected instance. A
basic application program does not receive CMIP create requests to have new
instances generated, but it can create and register any number of object instances.
The trigger for creating these instances is the responsibility of the application
program and is often dictated by the resources the application program must
represent.

Subtree managers

A subtree manager is an application program that has assumed additional
responsibilities. It supports any number of instances. It is not required to register
any of them with CMIP services. It has requested and been granted ownership of a
portion of the naming tree, which includes all instances contained within it.

All scoped indications that can include a member of the subtree owned by the
subtree manager are passed to the subtree manager. It is responsible for managing
scoping within its subtree and for creating all of the responses from its instances.

The subtree manager indicates to CMIP services that it has completed the
responses from its supported instances. It cannot use the MIB variables &DN or
&OC for any of its instances that are not registered. For information about MIB
variables, refer to[’MIB variable format” on page 98]

Once a subtree manager has registered itself, it establishes ownership of a subtree.
At that point, no other application program can register objects within that subtree.
Only the subtree manager can register additional objects within the subtree. For
each leaf of the subtree that the subtree manager registers, it must first register all
instances in that branch of the tree. An object cannot be registered unless its parent
has been registered. Messages to an object within the subtree are assigned the local
identifier of the subtree manager object. This is the local identifier that was
explicitly requested.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

A process that registers as a subtree manager can assume responsibility for one or
more subtrees of the naming hierarchy. This capability allows the process to
register only a small number of instances. A minimum of one instance is required.
For each instance that it chooses not to register, the subtree manager must do the
global-to-local name mapping and scoping functions that are provided by CMIP
services for registered instances.

If many of the instances an application program represents are dynamic and
changing frequently, it might be preferable for the application program to act as a
subtree manager, instead of registering all of its instances. In that case, the
overhead of registering the instances makes management too expensive to be
practical.

Another example is when the application program chooses to control scoping itself.
For example, if an agent application program is to receive scoped requests for a
large number of objects, it might be better to receive a single scoped request. (A
single scoped request is one that is not replicated by CMIP services.) A single
scoped request might allow the request to be processed more efficiently internally.

Here we list one advantage and one disadvantage to registering as a subtree
manager. The advantage is that a subtree manager can avoid registering some or
all of its object instances and can control scoped operations. The disadvantage is
that a subtree manager is required to assign names within the name space it owns.
It must also ensure that the names are unique. It must perform all of the scoping
function within its name space, a requirement that makes coding the application
program more complicated.

When designing an application program, you must decide between writing
additional code to provide these functions or registering all instances.

Create handlers

A create handler is an application program that assumes additional responsibilities.
It registers to receive create messages for instances of a specific class. Registering
allows create messages to be sent to a process that is capable of handling them. For
information about the API function that registers a create handler, refer to
[“MIBSendRegister—MIB asynchronous registration function” on page 79.|

Only one create handler can be registered per object class.

Special considerations for manager application programs

Manager application programs can have somewhat different requirements from
agent application programs. A manager application program generally has no need
to register any objects unless it needs to be the target of CMIP requests from other
manager application programs. VTAM CMIP services requires that at least one
object be registered. CMIP services does not require the object to be of a particular
object class. The managerApplication object class has been defined for manager
application programs that do not have a need for any specific class.

Manager application programs can base their management on the creation of EFDs
so that they can receive CMIP event reports from managed systems. For a
description of how to create the EFDs, refer to [‘Filters and routes events” on page|

Such manager application programs must register to CMIP services as an
application entity. The application entity title used must match the one specified in
the destination list within the EFDs it creates on the managed systems. For

Chapter 1. Introduction to Object Orientation and CMIP services 13

14

information about how an application can register as an application entity to CMIP
services, refer to[“Registering an application entity” on page 135.|

Manager application programs that rely on CMIP event reports for monitoring
objects at remote systems might need a mechanism to help them determine when
the connection to the managed system is down. CMIP services gives application
programs the ability to subscribe to associations. For example, a manager might
want to subscribe to each association that was used for creating an EFD. The
handle for each such association is returned in the response to the create request
for the EFDs. For information on how an application program can subscribe to an
association, refer to [“Subscribing to association information” on page 133

Special considerations for topology manager application
programs

Usually, topology manager application programs need to know about specific
resources or sets of resources, but do not want to receive event reports about all
resources in a network. For CMIP services to know which resources the manager
application program is interested in, the manager application program creates an
EFD object and specifies a filter attribute for it to indicate which event reports are
to be forwarded to the manager application program.

Therefore, to allow the VTAM topology agent to send only those notifications for
resources that a topology manager application program is interested in, the
following conditions must be met:

+ VTAM must be started with the OSIEVENT=PATTERNS start option. See
|Communications Server: SNA Resource Definition Referencd for a description of this
start option.

* The manager application program must create EFD objects with filter attributes
that follow the patterns that CMIP services recognizes. For a description of these
patterns, refer to[“Patterns of EFDs that CMIP services recognizes.”]

If the OSIEVENT=ALL start option is specified, the VTAM topology agent
generates all possible notifications, as long as at least one EFD has been created. If
no EFDs have been created, no notifications are generated.

If the OSIEVENT=NONE start option is specified, the VTAM topology agent
generates no notifications.

Patterns of EFDs that CMIP services recognizes

If the filter attribute is specified according to the patterns described here and the
OSIEVENT=PATTERNS start option is specified, CMIP services recognizes that the
manager application program is interested in a particular resource or set of
resources. CMIP services recognizes the following patterns:

A filter specifies a certain object class but not a specific resource and the
OSIEVENT=PATTERNS start option is specified.

If the object class relates to VTAM topology, the VTAM topology agent forwards
to CMIP services all notifications for all instances of that class. CMIP services
then creates an event report and sends it to the manager application program if
all criteria in the filter were met.

* A filter specifies a certain resource, with or without object class specified and the
OSIEVENT=PATTERNS start option is specified.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

If the object class relates to VTAM topology, the VTAM topology agent forwards
notifications for that instance to CMIP services. CMIP services then creates an
event report and sends it to the manager application program if all criteria in the
filter were met.

A filter is created locally by some manager application program to collect remote
notifications using a filter similar to the one shown:

(item (equality (attributeld 1.3.18.0.0.1746, attributeValue
(mgr (distinguishedName '1.3.18.0.2.4.6=netid;2.9.3.2.7.4=(n
ame "cpname");1.3.18.0.0.2175=0bjectname"')))))

CMIP services assumes that such filters are not meant to collect topology
information, so the presence of this EFD does not cause the topology agent to
start generating notifications.

Specific object classes that CMIP services recognizes
Here are the object identifiers for the recognized classes:

1.3.18.0.0.1829
logicalUnit

1.3.18.0.0.2281
crossDomainResource

1.3.18.0.0.1803
luGroup

1.3.18.0.0.2267
definitionGroup

1.3.18.0.0.2085
logicalLink

1.3.18.0.0.2089
port

1.3.18.0.0.1844
t4Node

CMIP error handling

This section discusses the general VTAM CMIP error-handling scheme. It covers
what types of errors can be detected and returned to invoking application
programs and what types of general handling must occur when error conditions
are returned.

The error handling scheme for the most part can be described in generic terms.
Error handling specific to a given CMIP operation is described in the section that
covers that operation.

General error handling

This section discusses how the Systems Management Application Entity (SMAE)
portion of CMIP services handles remote operations CMIP (RO/CMIP) errors. In
general, the error reporting mechanism is dictated by the area of CMIP services
that detects the error.

Errors found during outbound CMIP processing
An outbound CMIP string is a CMIP string that is being sent from an application
program to some destination.

Chapter 1. Introduction to Object Orientation and CMIP services 15

16

In general, any error found in a request (confirmed and unconfirmed) or response
in the originating SMAE is reported to the invoking application program by an
asynchronous CMIP services API error code as a service error.

In the case where the destination of the CMIP string is on the same system as the
origin of the CMIP string, some differences apply. If the CMIP string arrives at the
presentation layer of CMIP services before an error is detected, the CMIP error is
not reported as an API error code. In this case, once the CMIP string has passed
the presentation layer and is back in the SMAE, the SMAE does not distinguish
between same-system errors and different-system errors. The error in this case is
handled as specified in the following list for inbound CMIP strings received from
other systems. Refer to [Chapter 3, “Overview of CMIP services API functions,” on|
for a list of these API error codes.

The system that originated the outbound request can also receive errors detected
on the destination system in the form of RO-REJECT(U), RO-REJECT(P), and
RO-ERROR. These error types are passed to the application program if enough
information is available for routing.

Errors found during inbound CMIP processing

An inbound CMIP string is a CMIP string (either request or response) that is being
received from some CMIP sender. The sender can be on a different system or on
the same system.

When the SMAE portion of CMIP services is the destination system of the CMIP
request or response, error handling is handled as follows:

* If the error is found in ROSE, an RO-REJECT(P) is sent to the originating
system.

This is true for responses and requests (both confirmed and unconfirmed).

* If the error is found in CMISE, an RO-REJECT(U) is sent to the originating
system.

This is true for responses and requests (both confirmed and unconfirmed).

* For errors found in requests above CMISE in CMIP services, an RO-ERROR is
returned if the request if confirmed.

If the request is not confirmed, the request is discarded.

* For responses, the code above CMISE in CMIP services does not have any
known error checking.

If an error is found at this level, CMIP services attempts to pass the response to
the appropriate object or discard the message if the message cannot be routed.

* If an application program detects an error during CMIP request processing, an
RO-ERROR is returned if the request if confirmed.
If the request is not confirmed, the request is discarded.
For confirmed requests, the actual errors returned are to be defined by the
application program, such as the VTAM topology agent. Refer to |”Responding tol
[CMIP requests” on page 161|for more information on how the VTAM topology
agent handles such errors.

* If an application program detects an error during CMIP response processing, the
error handling processing is defined by the application program. Refer to
[“Responding to CMIP requests” on page 161| for more information on how the
VTAM topology agent handles such errors.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

CMIP sequencing for separate CMIP operations

CMIP flows that relate to separate CMIP operations could flow between the agent
application program and the manager application program in any order. The
VTAM topology agent and CMIP services do not attempt to ensure that such CMIP
strings, generated as the result of separate operations, are sequenced and delivered
based on order of events or processing. For example, a notification that is
generated by VTAM after a GET response is built could actually be received by the
manager application program before the GET response.

Therefore, the manager application program should not rely on order of receipt as
an indication of order of processing at the agent application program. There is no
correlation between order of processing by the agent application program and time
of receipt by the manager application program.

Chapter 1. Introduction to Object Orientation and CMIP services 17

18 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 2. Sample CMIP application program

Many of the aspects of writing a CMIP application program can be explained using
a sample application program. This chapter presents a CMIP application program
that sends a simple CMIP request to another application program on any host.

The purpose of this application program is to determine whether or not CMIP
services is active on a specific host in the network. In other words, this is a ping
application program for CMIP over SNA much as APING is a ping application
program for APPC. The sample program implements this by sending a CMIP GET
request to the system object on that host. The system object should always exist,
either as part of CMIP services or as part of a CMIP application program. If an
error occurs bringing up an association to the remote CMIP services, then either
the specified host is unreachable or CMIP services is not active on that host.
Otherwise, the specified host is reachable and CMIP services is active. Errors
returned by the remote system object itself are unimportant.

Note: The system object is implemented by VTAM as part of CMIP services, so it
is always present if VTAM CMIP services is active.

The sample application program is comprised of the following source files:

ACYCMSI1C
This C language module is the main logic of the application program. It
calls several different API functions to communicate with CMIP services.

ACYCMS2A
This assembler language module is the read queue exit routine for the
application program.

ACYCMS3A
This assembler language module is used to obtain the address of an API
function in LPALIB.

ACYCMS4A
This assembler language module is used to switch the application program
task into supervisor state.

ACYCMS5A
This assembler language module is used to wait on an ECB.

ACYCMS6A
This assembler language module is the TPEND exit routine for the
CMIPPING application program.

ACYCMS7A
This assembler language module is used to switch the application program
task into problem state.

source file” on page is the main logic for the
“ACYCMSI1C file” page 22|is th i lg' f he CMIPPING
application program.

Note: To facilitate reading on any host terminal and printing on any host printer,
trigraph sequences have been used for square brackets. These sequences are
??2(for left square bracket and ??) for right square bracket.

© Copyright IBM Corp. 1995, 2008 19

An outline of processing in function main is listed here:
1. Make sure that the user has provided the required parameters to the program.
a. TargetNetid is the SNA netID of the host that will be pinged.

b. TargetNauname is the SNA NAU name (in this case, a CP name or SSCP
name) of the host that will be pinged.

c. ApplName is the ACB name used by CMIPPING when issuing
MIBConnect.

d. Password, if provided, is the ACB password as specified on the APPL
statement.

2. Load the addresses of the API functions which are used.

This program uses MIBConnect, MIBDisconnect, MIBSendCmipRequest, and
MIBSendRegister. ACYCMS3A is used to find the addresses of all of the API
functions.

3. Switch to supervisor state.
The caller of API routines must be in supervisor state. ACYCMS4A is
responsible for issuing the MODESET system macro to switch the task to
supervisor state.

4. Connect to CMIP services.
A CMIP Application must issue MIBConnect before calling any other MIB API
functions. MIBConnect opens an ACB on behalf of the calling application
program, initializes the connection with CMIP services, and returns various
information to the caller.

5. Register a managerApplication object.
Even though CMIPPING does not need to represent the behavior of any
objects for the purposes of the application program, it must register an object
nonetheless because CMIP services requires that requests be issued by an
object that it knows about. The managerApplication object class was defined
for manager application programs that use the registered object only as the
source of requests.
Before calling the MIBSendRegister function, it first builds the name of the
managerApplication object. The name of the system object on this system,
returned by MIBConnect, is used to build the name of this object.

6. Wait for the registration message from CMIP services.
ACYCMS6A is called to wait on an ECB. This ECB will be posted by the read
queue exit routine (ACYCMS2A) when it is called by CMIP services. The next
message to arrive should be the registration response.

7. Parse the registration response message from CMIP services.

If the msg_type field in the APIhdr is API_ REG_ACCEPT and the invokeld
field in the APIhdr is the one returned by MIBSendRegister, then the
registration succeeded.

8. Send a GET request to the system object on the target host.

This first builds the name of the remote system object to which a GET request
will be sent. It then builds the entire CMIP string representing the GET
argument.

The CMIP string is passed to MIBSendCmipRequest, which will send the GET
request to CMIP services for processing.

9. Wait for the GET response message from CMIP services.

ACYCMS6A is called again to wait until the read queue exit routine posts an
ECB to wake up the main task. The next message should be the GET
response.

20 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

10. Parse the GET response to determine whether or not CMIP services is active
on the target host.

If the invokeld field in the APIhdr is the one returned by
MIBSendCmipRequest and the msg_type field in the APIhdr is API_MSG,
then the request was received by a remote CMIP services. Determining
whether or not the system object was available on the remote system and was
able to processing the request would require parsing the string portion of the
response. That is beyond the scope of this application program.

11. Disconnect from CMIP services. If MIBConnect succeeded, MIBDisconnect
should be called — even if some other error happened in between.

12. Exit the application program.

[“ACYCMS2A source file” on page 29|is the read queue exit routine for the
CMIPPING application program. An outline of processing in the exit follows:

1. The VTAM reason code is always stored in the user data control block so that
the main task of CMIPPING (ACYCMSIC) can find out why the read queue
exit routine was driven.

2. If the reason code is zero, meaning that VTAM passed data to the read queue
exit routine, that data will be copied to the buffer in the user data control
block.

3. If the reason code is something other than zero, a message will be generated.
The likely scenario is that CMIP services is terminating.

4. The read queue exit routine posts an ECB which is being waited on by the
main task of CMIPPING in order to wake it up.

5. The read queue exit routine returns zero to VTAM, telling VTAM that it was
able to successfully process the message.

Note: In a real CMIP application program read queue exit routine, you probably
need additional buffer space to pass messages to the main task. Some CMIP
requests can result in many messages being returned by CMIP services, one
after another. It is unlikely that an application program designed like
CMIPPING would see all of the messages, since they would arrive more
quickly than the main task could be dispatched and process each one.

[“ACYCMS3A source file” on page 31|is a utility module to load the addresses of
the API functions on behalf of the CMIPPING application program. The only
processing to perform is to load the address of each routine into a control block
passed by the caller (ACYCMSIC).

Note: This module does not check return codes from the LOAD macro and always
returns zero. This is not appropriate for a real application program, since
those modules may not be installed in LPALIB.

[“ACYCMS4A source file” on page 34|is a utility module to switch into supervisor
state. The only processing to perform is to invoke the MODESET assembler
macroinstruction.

Note: CMIPPING must be authorized for the MODESET to work.

[“ACYCMS5A source file” on page 35|is a utility module to wait on a specified
ECB. The only processing to perform is to invoke the WAIT assembler
macroinstruction.

Chapter 2. Sample CMIP application program 21

[“ACYCMS6A source file” on page 36|is the TPEND exit routine for the CMIPPING
application program. All it does is display the reason code passed by VTAM.

[“ACYCMS7A source file” on page 38|is a utility module to switch into problem
state. The only processing to perform is to invoke the MODESET assembler
macroinstruction.

ACYCMS1C source file

/***/

/* */

/% MEMBER NAME: ACYCMS1C */

/* */

/* DESCRIPTIVE NAME: Sample CMIP Application */

/* */

/1% */

/* COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */

/* */

/* "RESTRICTED MATERIALS OF IBM" x/

/* */

/* 5695-117 (C) COPYRIGHT IBM CORP. 1994 */

/* */

/* MEMBER CATEGORY: Sample CMIP application */

/* */

/* */
/***/

/*

* CMIPPING - Sample C language CMIP application

*

* This sample application can be used to determine if CMIP Services
* is active on a specified host in the network.

*

* It illustrates some of the concepts involved in writing a CMIP

* application for use with VTAM.

*

* Notes: To facilitate reading on any host terminal and printing on
* any host printer, trigraph sequences have been used for

* square brackets. These sequences are "??(" for left square
* bracket and "??)" for right square bracket.

*/

#pragma csect(code, "ACYCMS1C")
#pragma csect(static,"SCYCMS1C")

/***/

/% C Standard Library include files */

#include #include #include
/***/

/* VTAM include files */

/***/

#include "acyaphdh.h" /* VTAM MIB API interface */

/***/

/* type declarations */
/***/

/***/
/* An instance of MIBAddresses_t is passed to ACYCMS3A, which fills =*/
/* it in with actual addresses of the MIB API functions, which are */
/* loaded from LPALIB. */

/***/

22 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

typedef struct MIBAddresses_tag
{

MIBConnect_t *MIBConnect;
MIBDisconnect_t *MIBDisconnect;
MIBSendRegister_t *MIBSendRegister;
MIBSendDeleteRegistration_t *MIBSendDeleteRegistration;
MIBSendRequest_t *MIBSendRequest;
MIBSendResponse_t *MIBSendResponse;
MIBSendCmipRequest t *MIBSendCmipRequest;
MIBSendCmipResponse_t *MIBSendCmipResponse;

} MIBAddresses_t;

/***/
/* The address of an instance of ReadQueueExitData_ t is passed to */
/* MIBConnect. CMIP Services then passes that same address to the */
/* Read Queue Exit each time it is called. That allows sharing of =*/

/* data between the Read Queue Exit and this main task. */
/***/

typedef struct ReadQueueExitData_tag
{

int ECB;

int ReasonCode;

char Buffer ?7(1638477);
} ReadQueueExitData_t;

/***/

/* external functions x/
[kK gk gk Kok ko K R e R R R R R T TR T Kk kxrhhhhhkkrrrhh kK kk /

/***/

/* ACYCMS2A is the Read Queue Exit for this sample CMIP application. */
/* Only the address of this routine is needed in C. */
/***/

extern void ACYCMS2A(void);

/***/

/* ACYCMS3A finds the addresses of routines in LPALIB via the LOAD */
/* assembler macroinstruction. */
/***/

extern int ACYCMS3A(MIBAddresses t =*);

/***/

/* ACYCMS4A switches to supervisor state via the MODESET assembler */
/* macroinstruction. */
/***/

extern void ACYCMS4A(void);

/***/
/* ACYCMS5A waits on an ECB via the WAIT assembler macroinstruction. */

/* It will be passed the address of the same ECB which the Read */
/* Queue Exit will post so that the Read Queue Exit can "wake up" */
/* this task when data is available. */
/********************************* """"""""" *******************/

extern void ACYCMS5A(int *ECB);
/***/

/* ACYCMS6A is the TPEND exit for this application. */

/***/

extern void ACYCMS6A(void);

Chapter 2. Sample CMIP application program 23

24

/***/

/* ACYCMS7A switches to problem state via the MODESET assembler */
/* macroinstruction. */
R R R R R R R e A T T T /

extern void ACYCMS7A(void);

/***/

/* constants */
/***/

#define APPL_NAME "CMIPPING" /* name of this application as
used in messages */

/***/

/* data types */

/***/

typedef void *Localld_t; /* Local identifiers, associated
with registered objects, must
have a size between 1 and 8
bytes. CMIPPING uses four-
byte Tocal identifiers of type
void *. */

/***/

/* Input parameters: */
/* (1) Netid of target CMIP Services */
/* (2) Nauname of target CMIP Services */
/* (3) Application name to use (valid ACB name) */
/* (4) Optional password */

/***/

int main(int argc,const char **argv)
{

APTIhdr *APIhdr_ptr;

char CMIP_StringArgument ??(512?7);

char MyObjectName ?7(12027);
char RemoteSystemObject ?7(120?7);
char SMAE 22(100??);
char SystemObject 27(10027);

const char *AppTName;

const char *Password;

const char *TargetNauname;

const char *TargetNetid;

char *VTAM Release;

int Connected, rc;

int LinkId;

MIBAddresses_t APIs;

unsigned int Invokeld;
ReadQueueExitData_t ReadQueueExitData;
size_t SMAE_Size, SystemObjectSize;
unsigned int ACB_Info;

Localld_t *MyObjectId;

memset (&ReadQueueExitData,0,sizeof (ReadQueueExitData));
if (argc != 4 && argc != 5)
{

fprintf(stderr,
"Usage: " APPL_NAME " Netid Nauname Applname \n"
Il\nll
! " APPL_NAME " is used to determine whether or not\n"

there is an active CMIP Services on a SNA host\n"

" specified by Netid and Nauname.\n"

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

u\nu

if (rc == 0)

{
TargetNetid =
TargetNauname =
App1Name =

if (argc == 5)
Password =
else
Password =

ACYCMS4A() ;

Applname is the ACB name used by this program.\n"
Netid and Nauname specify the target SNA host.\n"
Password (optional) is the ACB password.\n"

" APPL_NAME "

/*
argv ??2(122); /=
argv ?7(2??); /*
argv ?2(322); /*

argv

NULL;

/*
27(427); /*

/*

SMAE_Size = sizeof(SMAE);
= sizeof(SystemObject);
MyObjectId = (void *)"Anything you want"; /* The local identifier

SystemObjectSize

}

cannot continue.\n");

If no errors so far... */

first parm passed to program =/
second parm */
third parm */

If a password was provided... */
fourth parm */

You must be in supervisor
state to call VTAM MIB API
routines. */

for the object registered by
this application is the
address of this string. */

/***/

/* Obtain addresses of API routines used by this program. */
/***/

if (rc == 0)
{

rc = ACYCMS3A(&APIs);

if (rc 1= 0)

fprintf(stderr,
"The address of an API routine could not be loaded\n"
"from LPALIB.\n"

/*

If no errors so far... */

If no errors so far... */

A;gL_NAME " cannot continue.\n");
} }
if (rc == 0) /*
! rc = APIs.MIBConnect (0, /*

&LinkId, /*

always zero for this release =/
MIBConnect will fill in LinkId
with a handle to the

connection. */
65536, /* maximum number of outstanding

requests */
App1Name, /* ACB name */
(void *)ACYCMS6A, /+ TPEND exit */

(void *)ACYCMS2A, /* address of the Read

Queue Exit */

&SMAE_Size, /* On input, this is the size of

SMAE, /*

the SMAE buffer. On output,
this is the Tength of the SMAE
name. */
This is where MIBConnect will

Chapter 2. Sample CMIP application program 25

26

store the SMAE name (if there
is enough room). */
&SystemObjectSize, /* On input, this is the
size of the System Object name
buffer. On output, this is the
length of the System Object
name. */
SystemObject, /* This is where MIBConnect will
store the System Object name
(if there is enough room). */
(int)&ReadQueueExitData, /* This will be
provided to this appl's Read
Queue Exit by CMIP Services. =/
&ACB_Info, /* If an error occurs opening the
ACB, this will contain the
OPEN ACB error code. */
&VTAM Release, /* MIBConnect will store the
address of the VTAM release

level here. */
Password, /* ACB password */
0, /* dataspace not used %/
NULL, /* dataspace not used */

sizeof(Localld_t), /* size of local ids
for all objects registered by

this application */
0); /* no special options specified =/
Connected = rc == 0; /* Remember whether or not
MIBConnect was successful. x/
if (rc !'=0)
{
fprintf(stderr,
"MIBConnect returned %d.\n"
Il\nll
APPL_NAME " cannot continue.\n",
re);
}
if (rc == 0) /* If no errors so far... */

/***/
/* Build the distinguished name of the object that will be */
/* registered. It is named directly "under" the System Object, =/
/* so its name is the system object name concatenated with one */

/* more RelativeDistinguishedName. */
/* */
/* A short form distinguished name (DN) will be built. Note */
/* that CMIP Services can handle distinguished names from */

/* applications in either short or long form. Applications can =/
/* elect to receive distinguished names from CMIP Services in */
/* short form by specifying SHORT_NAMES as the last parameter to */
/* MIBConnect. By default, applications receive distinguished =*/
/* names in long form. */
/** """" khkhkkkhkhkhkrhhkkhhhdhhkdrhhxk ********************************/

strcpy (MyObjectName,SystemObject) ;
strcat (MyObjectName,";1.3.18.0.0.2175=");
strcat (MyObjectName,App1Name) ;

puts("Here is the object being registered:");
puts (MyObjectName) ;

rc = APIs.MIBSendRegister(LinkId, /* This is the handle returned by
MIBConnect. */
&Invokeld, /* MIBSendRegister will store

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

an invoke id, or correlator, for

the registration request here.*/
&MyObjectId, /* This is the address of

the Tocal id to be associated

with this object. */
"1.3.18.0.0.2155", /* This is the object
class of this object. */
DN_OF INSTANCE, /* This parameter must
have this value. */
MyObjectName, /* This is the dist.
name of this object. */
NULL, /* Use default name binding. */
0, /* no special capabilities */
0, /* no allomorphs */
NULL, /* no allomorphs */
0, /* not a create handler for any
class */
NULL); /* not a create handler */
if (rc !'=0)
{
fprintf(stderr,
"MIBSendRegister returned %d.\n"
||\n||
APPL_NAME " cannot continue.\n",
rc);
!
}
if (rc == 0) /% If o.k. so far... */

{
ReadQueueExitData.ECB = 0;
ACYCMS5A (&ReadQueueExitData.ECB);
if (ReadQueueExitData.ReasonCode == 0) /* If data was received...x/
APIhdr_ptr = (APIhdr *)ReadQueueExitData.Buffer;
else
rc = ReadQueueExitData.ReasonCode;
}

/***/

/* Parse the response from registration to see if it was o.k. */
/***/

if (rc == 0) /* If o.k. so far... */

if ((APIhdr_ptr->msg_type != API_REG_ACCEPT) ||
(APIhdr_ptr->invokeld != Invokeld)) /+ If an error
occurred... */
{
rc = 1;
fprintf(stderr,
"An unexpected response was received from object\n"
"registration.\n"
Il\nll
APPL_NAME " cannot continue.\n");

if (rc == 0) /* If o.k. so far... */
/***/
/* Build CMIP GET request string here using the netid and */
/* nauname of the target host. */
/** """""""""" /

strcpy (RemoteSystemObject,"1.3.18.0.2.4.6=");
strcat (RemoteSystemObject,TargetNetid);
strcat (RemoteSystemObject,";2.9.3.2.7.4=(name ");

Chapter 2. Sample CMIP application program 27

strcat (RemoteSystemObject,TargetNauname) ;
strcat (RemoteSystemObject,")");

strcpy (CMIP_StringArgument,
II(II
"baseManagedObjectClass 2.9.3.2.3.13, "
"baseManagedObjectInstance "
"(distinguishedName '");
strcat (CMIP_StringArgument,RemoteSystemObject);
strcat(CMIP_StringArgument,"'),"

"attributeldList "
"(2.9.3.2.7.35,2.9.3.2.7.5)"
") n) ;
rc = APIs.MIBSendCmipRequest(LinkId, /* handle returned by
MIBConnect */
3, /* operation value is GET */
CMIP_StringArgument,
&MyObjectId,
NULL,
DS_NOT_PROVIDED,
NULL,
&Invokeld);
if (rc !'=0)
{
fprintf(stderr,
"MIBSendCmipRequest returned %d.\n"
n \n n
APPL_NAME " cannot continue.\n",
rc);
}
}
if (rc == 0) /* If o.k. so far... */

ReadQueueExitData.ECB = 0;
ACYCMS5A (&ReadQueueExitData.ECB);
if (ReadQueueExitData.ReasonCode == 0) /* If data was received...*/
APIhdr_ptr = (APIhdr *)ReadQueueExitData.Buffer;
else
rc = ReadQueueExitData.ReasonCode;
}

if (rc == 0)

/***/

/* Display whether or not the GET was successful. */
/***/

if ((APIhdr_ptr->msg_type == API_MSG) &&
(APIhdr_ptr->invokeld == Invokeld))
{

/***/

/* Technically, the message can be a CMIP error message which */
/% could state that the system object doesn't exist or that */

/* the system object can't handle the request. Since this */
/* program only checks to see if the specified CMIP Services */
/* can be contacted, a CMIP error message will not be */
/* considered a problem. */

/***/
puts("The remote CMIP Services was contacted successfully.");

else

fprintf(stderr,
"The remote CMIP Services could not be contacted.\n");

28 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

rc = 1;
}
}

if (Connected)

rc = APIs.MIBDisconnect(LinkId, /* This is the handle returned by
MIBDisconnect. */

&ACB_Info); /+ If an error occurs closing the

ACB, MIBDisconnect will store
the CLOSE ACB error code here.x/

if (rc !'=0)
{
fprintf(stderr,
"MIBDisconnect returned %d.\n",
rc);
}
}
ACYCMS7A() ; /* You must be in problem
state to exit cleanly. */
fprintf(stderr,
APPL_NAME " is exiting with return code %d.\n",
rc);
return rc;
1
ACYCMS2A source file
*/******************************** """"""""" ************/
* /% */
x/* MEMBER NAME: ACYCMS2A */
* /% */
*/x DESCRIPTIVE NAME: Read Queue Exit for sample CMIP */
x /% application */
[*/
* /% */
x/* COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
/ */
* /% "RESTRICTED MATERIALS OF IBM" */
*[% */
* /% 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
* /% */
%/* MEMBER CATEGORY: Sample CMIP application */
* /% */

AR R R T AR S TS T ey
TITLE ' /H%kkkkrhshhkrhhdrhhrhhhrrhhhrhhhrrhhrrhrrrrrrrrrrrrxxxx*00001000

*kkkhkkk! 00002000

ACYCMS2A CSECT , 0001 00003000
ACYCMS2A AMODE 24 0001 00004000
ACYCMS2A RMODE 24 0001 00005000
OMAINENT DS OH 0001 00006000
USING *,0@15 0001 00007000

B @PROLOG 0001 00008000

DC AL1(16) 0001 00009000

DC C'ACYCMS2A 95.125' 0001 00010000

DROP @15 00011000

@PROLOG STM @14,@12,12(@13) 0001 00012000
LR 012,015 0001 00013000

@PSTART EQU ACYCMS2A 0001 00014000
USING @PSTART,@12 0001 00015000

ST ©013,0SA00001+4 0001 00016000

LA ©014,0SA00001 0001 00017000

ST @14,8(,013) 0001 00018000

LR 013,014 0001 00019000

Chapter 2. Sample CMIP application program 29

* 0014 00020000

*/**/ 0002 1000

[MAINLINE */ 00022000
R R R a s T R R e A T T e / 00023000
* 0014 00024000
R10 = R1; / Saves Pointer to Parameters */ 00025000
* 0014 00026000
LR R10,R1 0014 00027000
GLB_DATA.GLB_ReasonCode = VTAM_REASON; / Tell the main task why the 00028000
* Read Queue Exit was driven. %/ 00029000
* 0015 00030000
L ©04,VTAM_REASON(,R10) 0015 00031000

ST @04,GLB_REASONCODE(,R06_USER_DATA) 0015 00032000

IF (VTAM_REASON = 0) THEN / If data is available to be 0016 00033000
* copied... */ 00034000
LTR 04,004 0016 00035000

BNZ @RF00016 0016 00036000

* DO; 0017 00037000
* R11 = VTAM_LENGTH; 0018 00038000
L @05,VTAM_LENGTH(,R10) 0018 00039000

LR R11,@05 0018 00040000

* R3 = VTAM_LENGTH; 0019 00041000
LR R3,005 0019 00042000

* R2 = ADDR(GLB Buffer); 0020 00043000
LA R2,GLB_BUFFER(,R06_USER_DATA) 0020 00044000

* TMP_R10 = R10; 0021 00045000
LR ©@07_TMP_R10,R10 0021 00046000

* R10 = VTAM_APTHDR_PTR; 0022 00047000
L R10,VTAM_APIHDR_PTR(,R10) 0022 00048000

* MVCL(R2,R10); 0023 00049000
MVCL R2,R10 0023 00050000

* R10 = TMP_R10; 0024 00051000
LR R10,007_TMP_R10 0024 00052000

* END; 0025 00053000
*ELSE 0026 00054000
* DO; 0026 00055000
B ORCO00O16 0026 00056000

ORFOO016 DS OH 0027 00057000
* GEN (WTO 'CMIPPING: Read Queue Exit driven with reason <> 0!'); 00058000
0GS00027 DS OH 0027 00059000
WTO 'CMIPPING: Read Queue Exit driven with reason <> 0!' 00060000

@GEOOO27 DS OH 0028 00061000
* END; 0028 00062000
* 0028 00063000
R e T I T e Ty 00064000
/ Wake up the main task by posting the ECB which it is */ 00065000
/ waiting on. */ 00066000
*/~k***********************~k******~k********************************/ 00067000
* 0029 00068000
*R1 = ADDR(GLB_ECB); 0029 00069000
@RCO0016 LR R1,R06_USER_DATA 0029 00070000
*GEN; 0030 00071000
* 0030 00072000
0GS00030 DS OH 0030 00073000
POST (1),X'FFFF! 00074000
@GEOOO30 DS OH 0031 00075000
RETURN CODE(0); / Return to VTAM. */ 00076000
* 0031 00077000
SLR @15,015 0031 00078000

L 013,4(,013) 0031 00079000

L @14,12(,013) 0031 00080000

LM 000,012,20(@13) 0031 00081000

BR 014 0031 00082000

*END ACYCMS2A; 0032 00083000
@DATA DS OH 00084000
DS OF 00085000

@SA00001 DS 18F 00086000

30 z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

DS OF 00087000

LTORG 00088000

DS 0D 00089000
@DYNSIZE EQU 0 00090000
000 EQU © 00091000
001 EQU 1 00092000
002 EQU 2 00093000
003 EQU 3 00094000
004 EQU 4 00095000
005 EQU 5 00096000
006 EQU 6 00097000
007 EQU 7 00098000
008 EQU 8 00099000
@09 EQU 9 00100000
010 EQU 10 00101000
e11 EQU 11 00102000
e12 EQU 12 00103000
013 EQU 13 00104000
014 EQU 14 00105000
015 EQU 15 00106000
@07_TMP_R10 EQU @07 00107000
RO EQU @00 00108000
R1 EQU @01 00109000
R2 EQU 02 00110000
R3 EQU 63 00111000
RO6_USER DATA EQU @06 00112000
R10 EQU @10 00113000
R11 EQU @11 00114000
VTAM_PARM_LIST EQU 0,20,C'C' 00115000
VTAM_REASON EQU VTAM_PARM LIST,4,C'F' 00116000
VTAM_APTHDR PTR EQU VTAM PARM LIST+4,4,C'A’ 00117000
VTAM_LENGTH EQU VTAM_PARM_LIST+12,4,C'F" 00118000
VTAM_APTHDR EQU 0,,C'C' 00119000
GLB DATA EQU 0,16392,C'C' 00120000
GLB_ECB EQU GLB_DATA,4,C'F' 00121000
GLB_REASONCODE EQU GLB_DATA+4,4,C'F' 00122000
GLB BUFFER EQU GLB_DATA+8,16384,C'C' 00123000

AGO .UNREF 00124000
VTAM_MSG_TYPE EQU VTAM_PARM LIST+16,4,C'F’ 00125000
VTAM_STR_HEADER PTR EQU VTAM PARM LIST+8,4,C'A’ 00126000
.UNREF ~ANOP 00127000

DS oD 00128000
GENDDATA EQU * 00129000
GMODLEN EQU @ENDDATA-ACYCMS2A 00130000

END , (PL/X-370,0103,95125) 00131000

ACYCMS3A source file

*/***/

* /% */
*/+ MEMBER NAME: ACYCMS3A */
* /% */
x/* DESCRIPTIVE NAME: Load addresses of MIB API functions */
* /% for sample CMIP application */
/ */
* /% */
/ COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
* [*/
[% "RESTRICTED MATERIALS OF IBM" */
/ */
/ 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
* /% */
/+ MEMBER CATEGORY: Sample CMIP application */
* /% */
K [k gk gk ok ke ok ok ok ek ok ok ke k ok ok R kK rx T IR Rk h Kk krhh kKK Kk Fkkkkkkkkkkk [

TITLE ' /[Hkkkkkrdhdkhkrhhrkrhhrrhhrrhrhrrrbrrhrrrhrrrrrrrrrrrrxxxx%00001000

*kkkhkkk! 00002000

Chapter 2. Sample CMIP application program 31

ACYCMS3A CSECT , 0001 00003000

ACYCMS3A AMODE 24 0001 00004000
ACYCMS3A RMODE 24 0001 00005000
OMAINENT DS OH 0001 00006000
USING *,0@15 0001 00007000
B @PROLOG 0001 00008000
DC AL1(16) 0001 00009000
DC C'ACYCMS3A 95.125' 0001 00010000
DROP @15 00011000
@PROLOG STM @14,@12,12(@13) 0001 00012000
LR 012,015 0001 00013000
OPSTART EQU ACYCMS3A 0001 00014000
USING @PSTART,@12 0001 00015000
* 0007 00016000
*/**/ 00017000
/ */ 00018000
[MAINLINE */ 00019000
A */ 00020000
K[k kkkk kR kk kAR kR Rk kR R R IR AR I F AR *FRRhF R R hk kR khkkkhkkkkhkrkrkrrkrxrrcxxx/ 00021000
* 0007 00022000

* [k dkkk ko kk kR kk kR kk kR Rk kR kkkkkkhhkkkk Rk khkkhkkkkk bk hkkkkkrkkkxrkxxxx/ 00023000
*/%x MVS will abnormally terminate the task if a routine cannot be */ 00024000
x/* found. "Good" code would use the ERRET parameter on the LOAD */ 00025000
x/%* macro to provide an exit to be called if the specified module */ 00026000

*/% cannot be found. Using that capability, this routine could */ 00027000
x/* return a bad return code instead of having the task terminated */ 00028000
/% when a routine can't be found. */ 00029000
*/**/ 00030000
* 0007 00031000
R10 = R1; / Free up Rl since LOAD will 0007 00032000
* clobber it. */ 00033000
* 0007 00034000
LR R10,R1 0007 00035000
*RFY R1 UNRSTD; 0008 00036000
* 0008 00037000
*GEN CODE SETS(RO,R1) DEFS(ACYAPCNP) (LOAD EP=ACYAPCNP); 0009 00038000
0GS00009 DS OH 0009 00039000
LOAD EP=ACYAPCNP 00040000
OGEOOOO9 DS OH 0010 00041000
*MIBConnect = RO; 0010 00042000
* 0010 00043000
L @11,PARM_PTR(,R10) 0010 00044000
ST RO,MIBCONNECT(,@11) 0010 00045000
*GEN CODE SETS(RO,R1) DEFS(ACYAPD1P) (LOAD EP=ACYAPD1P); 0011 00046000
0GS00011 DS OH 0011 00047000
LOAD EP=ACYAPD1P 00048000
@GEOOO11 DS OH 0012 00049000
*MIBDisconnect = RO; 0012 00050000
* 0012 00051000
L @11,PARM_PTR(,R10) 0012 00052000
ST RO,MIBDISCONNECT(,@11) 0012 00053000
*GEN CODE SETS(RO,R1) DEFS(ACYAPRGP) (LOAD EP=ACYAPRGP); 0013 00054000
©0GS00013 DS OH 0013 00055000
LOAD EP=ACYAPRGP 00056000
@GEOOO13 DS OH 0014 00057000
*MIBSendRegister = RO; 0014 00058000
* 0014 00059000
L @11,PARM_PTR(,R10) 0014 00060000
ST RO,MIBSENDREGISTER(,@11) 0014 00061000
*GEN CODE SETS(RO,R1) DEFS(ACYAPDRP) (LOAD EP=ACYAPDRP); 0015 00062000
0GS00015 DS OH 0015 00063000
LOAD EP=ACYAPDRP 00064000
@GEOOO15 DS OH 0016 00065000
*MIBSendDeleteRegistration = RO; 0016 00066000
* 0016 00067000
L @11,PARM_PTR(,R10) 0016 00068000
ST RO,MIBSENDDELETEREGISTRATION(,@11) 0016 00069000

32 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

*GEN CODE SETS(RO,R1) DEFS(ACYAPQRP) (LOAD EP=ACYAPQRP); 0017 00070000

0GS00017 DS OH 0017 00071000
LOAD EP=ACYAPQRP 00072000
0GEOOO17 DS OH 0018 00073000
*MIBSendRequest = RO; 0018 00074000
* 0018 00075000
L @11,PARM_PTR(,R10) 0018 00076000
ST RO,MIBSENDREQUEST(,@11) 0018 00077000
*GEN CODE SETS(RO,R1) DEFS(ACYAPRSP) (LOAD EP=ACYAPRSP); 0019 00078000
0GS00019 DS OH 0019 00079000
LOAD EP=ACYAPRSP 00080000
@GEOO019 DS OH 0020 00081000
*MIBSendResponse = RO; 0020 00082000
* 0020 00083000
L @11,PARM_PTR(,R10) 0020 00084000
ST RO,MIBSENDRESPONSE (,@11) 0020 00085000
*GEN CODE SETS(RO,R1) DEFS(ACYAPQCP) (LOAD EP=ACYAPQCP); 0021 00086000
0GS00021 DS OH 0021 00087000
LOAD EP=ACYAPQCP 00088000
0GE00021 DS OH 0022 00089000
*MIBSendCmipRequest = RO; 0022 00090000
* 0022 00091000
L @11,PARM_PTR(,R10) 0022 00092000
ST RO,MIBSENDCMIPREQUEST(,@11) 0022 00093000
*GEN CODE SETS(RO,R1) DEFS(ACYAPCPP) (LOAD EP=ACYAPCPP); 0023 00094000
©0GS00023 DS OH 0023 00095000
LOAD EP=ACYAPCPP 00096000
0GEO0023 DS OH 0024 00097000
*MIBSendCmipResponse = RO; 0024 00098000
* 0024 00099000
L @11,PARM_PTR(,R10) 0024 00100000
ST RO,MIBSENDCMIPRESPONSE(,011) 0024 00101000
RETURN CODE(0); / Assume that no error 00102000
* occurred. */ 00103000
* 0025 00104000
SLR @15,0@15 0025 00105000
L @14,12(,013) 0025 00106000
LM @00,012,20(@13) 0025 00107000
BR 014 0025 00108000
*END ACYCMS3A; 0026 00109000
@DATA DS OH 00110000
DS OF 00111000
DS OF 00112000
LTORG 00113000
DS 0D 00114000
ODYNSIZE EQU 0 00115000
©00 EQU © 00116000
001 EQU 1 00117000
002 EQU 2 00118000
@03 EQU 3 00119000
004 EQU 4 00120000
@05 EQU 5 00121000
006 EQU 6 00122000
007 EQU 7 00123000
008 EQU 8 00124000
009 EQU 9 00125000
@10 EQU 10 00126000
@11 EQU 11 00127000
@12 EQU 12 00128000
013 EQU 13 00129000
@14 EQU 14 00130000
015 EQU 15 00131000
RO EQU @00 00132000
R1 EQU @0l 00133000
R10 EQU @10 00134000
MIBADDRESSES T EQU 0,32,C'C' 00135000
MIBCONNECT EQU MIBADDRESSES T,4,C'A' 00136000

Chapter 2. Sample CMIP application program 33

MIBDISCONNECT EQU MIBADDRESSES T+4,4,C'A'
MIBSENDREGISTER EQU MIBADDRESSES T+8,4,C'A'

MIBSENDDELETEREGISTRATION EQU MIBADDRESSES T+12,4,C'A'

MIBSENDREQUEST

EQU MIBADDRESSES T+16,4,C'A'

MIBSENDRESPONSE EQU MIBADDRESSES T+20,4,C'A’
MIBSENDCMIPREQUEST EQU MIBADDRESSES T+24,4,C'A'
MIBSENDCMIPRESPONSE EQU MIBADDRESSES T+28,4,C'A'

PARM_PTR EQU
DS
@ENDDATA EQU
@MODLEN EQU
END

0,4,C'A’

oD

*

@ENDDATA-ACYCMS3A

, (PL/X-370,0103,95125)

00137000
00138000
00139000
00140000
00141000
00142000
00143000
00144000
00145000
00146000
00147000
00148000

ACYCMSA4A source file

*/***/

34

*[%

/ MEMBER NAME: ACYCMS4A

[

%/+ DESCRIPTIVE NAME: Switch to supervisor state for sample

* /%
* /%
* /%
*/% COPYRIGHT:
* /%
[
*/[%
[
* /%

CMIP application

LICENSED MATERIALS - PROPERTY OF IBM
"RESTRICTED MATERIALS OF IBM"

5695-117 (C) COPYRIGHT IBM CORP. 1994

/+ MEMBER CATEGORY: Sample CMIP application

*[%

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/***/

TITLE ' [*xkkkkdhshkrhhhrhhhrrhhrhhhrhrrbrhrhrhrrrrrrrrrrrrrxxxx%00001000

ACYCMS4A CSECT
ACYCMS4A AMODE
ACYCMS4A RMODE
@MAINENT DS
USING
B
DC
DC
DROP
@PROLOG STM
LR
@OPSTART EQU
USING

*

©@GS00002 DS

*kkkhkkkx!

24

24

OH

*,015

@PROLOG

AL1(16)
C'ACYCMS4A 95.125"
@15
014,012,12(013)
012,015
ACYCMS4A
@PSTART,@12

OH

MODESET MODE=SUP

@GE000O2 DS
*END ACYCMS4A;

@ELOOOO1 DS
@EFO0001 DS
@ERO0001 LM
BR
@DATA DS
DS
DS
LTORG
DS
@DYNSIZE EQU
@00 EQU
@01 EQU
@02 EQU
@03 EQU
@04 EQU

OH

OH

OH
@14,012,12(@13)
@14

OH

OF

OF

D

PN RROOO

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

0001
0001
0001
0001
0001
0001
0001
0001

0001
0001
0001
0001
0002
0002

0003
0003
0003
0003
0003
0003

00002000
00003000
00004000
00005000
00006000
00007000
00008000
00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000

@05 EQU 5 00036000
@06 EQU 6 00037000
@07 EQU 7 00038000
@08 EQU 8 00039000
@09 EQU 9 00040000
@10 EQU 10 00041000
@11 EQU 11 00042000
@12 EQU 12 00043000
@13 EQU 13 00044000
@14 EQU 14 00045000
@15 EQU 15 00046000

DS 0D 00047000
@ENDDATA EQU =* 00048000
@MODLEN EQU GENDDATA-ACYCMSA4A 00049000

END ,(PL/X-370,0103,95125) 00050000

ACYCMSS5A source file

*/***/

/ */
/ MEMBER NAME: ACYCMS5A */
/ */
*/% DESCRIPTIVE NAME: WAIT on ECB for sample CMIP application */
* /% */
* /% */
x/* COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
* /% */
/ "RESTRICTED MATERIALS OF IBM" */
/ */
* /% 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
* /% */
/ MEMBER CATEGORY: Sample CMIP application */
* /% */

AR R e R a2 Ty
TITLE ' /Hkkkkkrdhskhkrhhhkrhhrhhhhrhhhrhrhrrhrrrhrrrrrrrrrrrxxxxx*00001000

*kkkhkkk! 00002000

ACYCMS5A CSECT , 0001 00003000
ACYCMS5A AMODE 24 0001 00004000
ACYCMS5A RMODE 24 0001 00005000
OMAINENT DS OH 0001 00006000
USING *,@15 0001 00007000

B @PROLOG 0001 00008000

DC AL1(16) 0001 00009000

DC C'ACYCMS5A 95.125' 0001 00010000

DROP @15 00011000

@PROLOG STM @14,012,12(@13) 0001 00012000
LR 012,015 0001 00013000

@PSTART EQU ACYCMS5A 0001 00014000
USING @PSTART,@12 0001 00015000

* 0009 00016000
e [ek ek ok ok ok ko ok ok FH KKK KKK E KK A KA KR F R H IR H IR F IR H KR F KKK KA KKK KKK KKK KKK KA / 00017000
[*/ 00018000
* [* MAINLINE */ 00019000
[*/ 00020000
*/**/ 00021000
* 0009 00022000
*R2 = R1; 0009 00023000
* 0009 00024000
LR R2,R1 0009 00025000

*R1 = ADDR(THE_ECB); 0010 00026000
* 0010 00027000
L R1,THE_ECB_PTR(,R2) 0010 00028000

*GEN EXIT; 0011 00029000
* 0011 00030000
©0GS00011 DS OH 0011 00031000
WAIT 1,ECB=(1) 00032000
@GEOOO11 DS OH 0012 00033000

Chapter 2. Sample CMIP application program 35

*RETURN CODE(0) 0012 00034000

* 0012 00035000

SLR @15,@15 0012 00036000

L @14,12(,013) 0012 00037000

LM 000,012,20(013) 0012 00038000

BR @14 0012 00039000
*END ACYCMS5A; 0013 00040000
@DATA DS OH 00041000

DS OF 00042000

DS OF 00043000

LTORG 00044000

DS 0D 00045000
@DYNSIZE EQU 0O 00046000
@00 EQU © 00047000
@01 EQU 1 00048000
@02 EQU 2 00049000
@03 EQU 3 00050000
@04 EQU 4 00051000
@05 EQU 5 00052000
@06 EQU 6 00053000
@07 EQU 7 00054000
©08 EQU 8 00055000
@09 EQU 9 00056000
@10 EQU 10 00057000
@11 EQU 11 00058000
@12 EQU 12 00059000
@13 EQU 13 00060000
@14 EQU 14 00061000
@15 EQU 15 00062000
RO EQU @00 00063000
R1 EQU eo1 00064000
R2 EQU @02 00065000
R14 EQU @14 00066000
R15 EQU @15 00067000
THE_ECB EQU 0,4,C'F' 00068000
THE_ECB_PTR EQU 0,4,C'A' 00069000

DS oD 00070000
@ENDDATA EQU = 00071000
@MODLEN EQU GENDDATA-ACYCMS5A 00072000

END ,(PL/X-370,0103,95125) 00073000

ACYCMSG6A source file

* [k gk dk ok kR kKK xR I I IRk hhhkkxrhh kKK k% ok krx I I IR KRk hh kI *h* kKK Kk */
* /% */
%/+* MEMBER NAME: ACYCMS6A */
* /% */
*/+ DESCRIPTIVE NAME: TPEND exit for sample CMIP application =/
* /% */
* /% */
*/% COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM */
* /% */
* [% "RESTRICTED MATERIALS OF IBM" */
[*/
* /% 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
[*/
/+ MEMBER CATEGORY: Sample CMIP application */
[*/

R R R T a1y
TITLE ' [#xkkkhhdhhkrhhhrhhhkhhhrrhhrhrhhhrhhhrhhrrrhrrrrrxrrxxxx%00001000

*kkkkkkkx ! 00002000

ACYCMS6A CSECT , 0001 00003000
ACYCMS6A AMODE 24 0001 00004000
ACYCMS6A RMODE 24 0001 00005000
OMAINENT DS OH 0001 00006000
USING *,0@15 0001 00007000

B @PROLOG 0001 00008000

36 z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

DC
DC
DROP

@PROLOG LR

@PSTART EQU

AL1(16)

C'ACYCMS6A 95.125'
@15

012,015

ACYCMS6A

USING @PSTART,@12

*
*

0001
0001

0001
0001
0001
0005
0005

*/**/

* /%

* [

* /%

MAINLINE

*/
*/
*/

*/**/

*

*SELECT (REASON_CODE);

*

L
LTR
BM
BE
LA
CR
BH
BE
1C
SLL
B
0GLO0OO1 B
B
B
*WHEN (0)
@RT00006 DS
* GEN;
*
0GS00007 DS
WTO !

code
@02,REASON_CODE(,R1)
002,002
@RT00014
@RTO0006
©00,12
002,000
@RTO0014
@RT00012
©02,0CB000O64 (@0O2)
@02,2
@GLOOOO1(R02)
@RT00014
@RTO0008
@RT00010

OH

OH

WTO 'CMIPPING TPEND DRIVEN: REASON CODE=00'

WTO
@GE00007 DS
«WHEN (4)

B
@RTO0008 DS
* GEN;
*
@6S00009 DS

WTO

OH
@RCO0O0O05
OH

OH

WTO 'CMIPPING TPEND DRIVEN: REASON CODE=04'

WTO '
@GEOO009 DS
*WHEN (8)

B
@RTO0010 DS
* GEN;
*
©@GS00011 DS
WTO '

OH
@RCO0005
OH

OH

WTO 'CMIPPING TPEND DRIVEN: REASON CODE=08'

WTO '
@GEOGO11 DS
«WHEN (12)

B
GRTOO0012 DS
* GEN;
*
©0GS00013 DS
WTO '

OH
@RCO0005
OH

OH

WTO 'CMIPPING TPEND DRIVEN: REASON CODE=12'

Chapter 2. Sample CMIP application program 37

0005

/* Issue message based on reason

*/
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0005
0006
0007
0007
0007
0007

0008
0008
0008
0009
0009
0009
0009

0010
0010
0010
0011
0011
0011
0011

0012
0012
0012
0013
0013
0013
0013

00009000
00010000
00011000
00012000
00013000
00014000
00015000
00016000
00017000
00018000
00019000
00020000
00021000
00022000
00023000
00024000
00025000
00026000
00027000
00028000
00029000
00030000
00031000
00032000
00033000
00034000
00035000
00036000
00037000
00038000
00039000
00040000
00041000
00042000
00043000
00044000
00045000
00046000
00047000
00048000
00049000
00050000
00051000
00052000
00053000
00054000
00055000
00056000
00057000
00058000
00059000
00060000
00061000
00062000
00063000
00064000
00065000
00066000
00067000
00068000
00069000
00070000
00071000
00072000
00073000
00074000
00075000

WTO ' '
@GEO0013 DS OH

*0THERWISE
B @RCOO005
@RTO0014 DS OH
* GEN;
*
0GS00015 DS OH
WTO ! !
WTO 'CMIPPING TPEND DRIVEN: UNEXPECTED REASON CODE!
WTO ! !
GGEOOO15 DS OH
*END;

*

@RCO00O5 DS OH

RETURN CODE (RC) / return to VTAM
*

@ELOOAOL DS OH

@EFO000L DS OH

@EROO0O1 BR @14

*END ACYCMS6A;

@DATA DS OH

DS OF

DS OF

LTORG

DS 0D
@CBO0064 DC XL12'000000000100000002000000"
@DYNSIZE EQU 0O
@00 EQU ©
@01 EQU 1
@02 EQU 2
@03 EQU 3
@04 EQU 4
@05 EQU 5
@06 EQU 6
@07 EQU 7
@08 EQU 8
@09 EQU 9
@10 EQU 10
@11 EQU 11
@12 EQU 12
@13 EQU 13
@14 EQU 14
@15 EQU 15
R1 EQU eo1
RC EQU @15

TPEND_PARM_LIST EQU 0,8,C'C'
REASON_CODE EQU TPEND_PARM_LIST+4,4,C'F'

AGO .UNREF
ACB_PTR EQU TPEND_PARM_LIST,4,C'A’
.UNREF ANOP

DS 0D

OGENDDATA EQU =
@MODLEN EQU GENDDATA-ACYCMS6A
END ,(PL/X-370,0103,95125)

0014
0014
0014
0015
0015
0015
0015

0016
0016
0016
0017

*/
0017
0017
0017
0017
0018

00076000
00077000
00078000
00079000
00080000
00081000
00082000
00083000
00084000
00085000
00086000
00087000
00088000
00089000
00090000
00091000
00092000
00093000
00094000
00095000
00096000
00097000
00098000
00099000
00100000
00101000
00102000
00103000
00104000
00105000
00106000
00107000
00108000
00109000
00110000
00111000
00112000
00113000
00114000
00115000
00116000
00117000
00118000
00119000
00120000
00121000
00122000
00123000
00124000
00125000
00126000
00127000
00128000
00129000
00130000

ACYCMST7A source file

*/***/

*/%

% /% MEMBER NAME: ACYCMS7A

* /%

*/% DESCRIPTIVE NAME: Switch to problem state for sample CMIP
[application

[

[

*/% COPYRIGHT: LICENSED MATERIALS - PROPERTY OF IBM

38 z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

*/
*/
*/
*/
*/
*/
*/
*/

/ */

/ "RESTRICTED MATERIALS OF IBM" */
* /% */
* /% 5695-117 (C) COPYRIGHT IBM CORP. 1994 */
* /% */
/+ MEMBER CATEGORY: Sample CMIP application */
* /% */

AR R R R S A R 2 E Ty
TITLE ' /H%kkkkrdhshhkrhhhkrhhrhhhrrhhhrrhhrrhhrrhrrrrrrrrrrrrxxxx%00001000

*kkkhkkk ! 00002000

ACYCMS7A CSECT , 0001 00003000
ACYCMS7A AMODE 24 0001 00004000
ACYCMS7A RMODE 24 0001 00005000
OMAINENT DS OH 0001 00006000
USING *,@15 0001 00007000

B @PROLOG 0001 00008000

DC AL1(16) 0001 00009000

DC C'ACYCMS7A 95.125' 0001 00010000

DROP @15 00011000

@PROLOG STM @14,012,12(@13) 0001 00012000
LR 012,015 0001 00013000

OPSTART EQU ACYCMS7A 0001 00014000
USING @PSTART,@12 0001 00015000

* 0002 00016000
0GS00002 DS OH 0002 00017000
MODESET MODE=PROB 00018000

@GEOO002 DS OH 0003 00019000
*END ACYCMS7A; 0003 00020000
@ELOOOO1 DS OH 0003 00021000
OEFO0001 DS OH 0003 00022000
@EROOOOL LM @14,012,12(@13) 0003 00023000
BR 014 0003 00024000

@DATA DS OH 00025000
DS 0F 00026000

DS OF 00027000

LTORG 00028000

DS 0D 00029000

ODYNSIZE EQU 0 00030000
@00 EQU © 00031000
e01 EQU 1 00032000
002 EQU 2 00033000
©03 EQU 3 00034000
004 EQU 4 00035000
@05 EQU 5 00036000
006 EQU 6 00037000
@07 EQU 7 00038000
©08 EQU 8 00039000
@09 EQU 9 00040000
010 EQU 10 00041000
@11 EQU 11 00042000
@12 EQU 12 00043000
@13 EQU 13 00044000
@14 EQU 14 00045000
015 EQU 15 00046000
DS 0D 00047000

QENDDATA EQU = 00048000
OMODLEN EQU GENDDATA-ACYCMS7A 00049000
END ,(PL/X-370,0103,95125) 00050000

Chapter 2. Sample CMIP application program 39

40 z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 3. Overview of CMIP services API functions

VTAM provides a set of API functions for management application programs to
use when interfacing with CMIP services. CMIP operations are performed through
this interface.

This chapter covers the following topics that relate to the API:

¢ Decisions an application programmer needs to make before coding
* Requirements for CMIP application programs

* Format of API messages

Decisions to make before coding

You must decide among the following options before you begin coding your

application program:

* Do you want to use the common storage area (CSA) interface of the data space
interface?

¢ What form of distinguished name does your application program require from
CMIP services?

* Is your application program to be a manager application program or an agent
application program?

The following sections describe each of these decisions.

Common storage area storage or data space storage?

The API interface provides either of two mechanisms for receiving messages. These
two mechanisms are through the following;:

* Common storage area (CSA) interface

* Data space interface

Some differences exist between using CMIP services with the CSA interface and
using CMIP services with the data space interface.

Common storage area interface

In the CSA interface, the read queue exit routine is called for each message. Each
message is passed in common storage. The CSA interface is intended to be used by
low-volume users.

The following exit routines and functions run under the same task:
* Read queue exit routine

e TPEND exit routine, if there is one

¢ MIBConnect function

* MIBDisconnect function

[Figure 1 on page 42| shows the relationship between the application program and
CMIP services for an application program using the CSA interface.

© Copyright IBM Corp. 1995, 2008 41

42

Application Program Address Space . VTAM Address Space

Application Program
Private other API function :
Area tasks : VTAM
T . : CMIP
read queue exit : Services
A :
outbound
messages IE\EI
. A A
Link * * 1 task
Pack CMIP Services API — 4—— execution flow — dispatch
Area ! :
Common inbound :
Storage message |[4— message flow —
Area :

Figure 1. Using CMIP services with the common storage area interface

Data space interface

Application programs that expect to receive a large volume of messages should use
the data space interface. For this interface, messages remain in the data space until
they are freed by the application program or until the data space fills, whichever
occurs first.

The following exit routines and functions run under the same task:
* Read queue exit routine

e TPEND exit routine, if there is one

* MIBConnect function

* MIBDisconnect function

describes the relationship between the application program and CMIP
services for an application program using the data space interface.

Application Program Address Space . Data Space . VTAM Address
: Space
Application
Program

dequeue and release

Private | H other API function
Area tasks VTAM
T . CMIP
read qieue exit inbound o Services
: messages v
outbound : V]
messages IE\EI : :
Link ry vy : task
Pack CMIP Services API | — 4—— execution flow —————— dispatch
Area : -

Figure 2. Using CMIP services with the data space interface

An application program that uses one or more of the individual API functions
must load the entry point for that function from LPALIB. All modules are placed in
LPALIB when the operating system is initialized. Once the entry points for the

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

APIs are known, the application program can call an API function directly. See
[Table 2 on page 53| for the module names of each API function. Application
programs can have any tasking structure. The functions for reading and freeing
messages in the data space are serially reusable only.

Advantages of CSA interface and data space interface
Message strings can be transferred from CMIP services to the application program
through either CSA storage or data space storage.

In general, application programs that use the CSA interface are simpler to code.
Application programs that use the data space interface are faster.

The data space interface has the following other advantages over the CSA
interface:

* Messages can be buffered. They do not have to be retrieved immediately from
the data space. With the CSA interface, the application program must copy its
message when the read queue exit routine is called. CMIP services frees the CSA
storage containing the message on return from the read queue exit routine.

* There are fewer task switches with the data space support. The read queue exit
routine is called only when the count of messages waiting in the data space goes
from zero to one. The CSA interface, by contrast, calls the read queue exit
routine for every message. Each time the read queue exit routine is called, it
causes a dispatch of the application program’s TCB.

* CSA can be a critical resource in some configurations. The data space interface
uses no CSA for inbound messages.

To display the amount of data space storage in use by an application program, use
the D NET,STORUSE command. See [z/OS Communications Server: SNA Operation] for
more information about this command.

An application program using the data space interface must not allow the
messages to back up in the data space to the point where the data space fills. If
this occurs, CMIP services stops forwarding messages to the application program
until the application program calls the MIBDisconnect function and calls the
MIBConnect function again.

Differences between the CSA interface and the data space interface are described
throughout this section.

™

Note: To use data space storage MVS/ESA "~ 3.1.3 or higher is required.

The API and the read queue exit routine handle all details of the message flow
between the application program and CMIP services. The application program
invokes the API when it needs to send a message. CMIP services returns
information to the application program according to the following methods:

* If using the CSA interface, information is returned by calling the read queue
exit routine for each message. For more information about the exit routine, refer
to[“Read queue exit routine for the CSA interface” on page 88

* If using the data space interface, information is returned by copying each
message to the data space and notifying the application program through the
read queue exit routine if the number of buffers in the data space goes from zero
to one. For more information about the exit routine, refer to[“Read queue exit|
[routine for data space storage” on page 89|

Chapter 3. Overview of CMIP services API functions 43

Note: When the application program is notified, the application program
receives notification again only when the number of buffers returns to
zero and goes to one buffer again. The application program must call the
routine to dequeue buffers from the data space storage until this routine

indicates that there are no more buffers to receive. See

[buffer with the dequeue routine” on page 92| for details.

The read queue exit routine runs in TCB mode in the application program’s
address space.

What form of distinguished name?

Your application program can choose between two forms of distinguished names:
short form and long form. Here is a distinguished name written in short form:

1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name AAAAAA)

Here is the same distinguished name written in long form:

(RelativeDistinguishedName (AttributeValueAssertion (attributeType
1.3.18.0.2.4.6, attributeValue "NETA")), RelativeDistinguishedName
(AttributeValueAssertion (attributeType 2.9.3.2.7.4, attributeVal
ue (name "AAAAAA"))))

Application programs can build distinguished names in either form to send to
CMIP services. Application programs specify to CMIP services on the connection
options parameter passed to the MIBConnect function which form of distinguished
names they wish to receive. For a description of the MIBConnect function, refer to
[“MIBConnect—MIB connection function” on page 56.|

What type of application program—manager or agent?

An agent application program represents resources and processes CMIP requests
sent to those resources. A manager application program gathers information by
sending CMIP requests to resources.

Requirements for CMIP application programs

44

An application program that uses the API must fulfill the following requirements:
* The API must be called from the home address space.

* The application program must be authorized.

* The application program must use a task mode of the task control block (TCB).

The read queue exit routine is called under the same TCB that issued the
MIBConnect function. An application program with multiple tasks can issue the
following API functions from any of its tasks:

— MIBSendRequest

— MIBSendResponse

— MIBSendRegister

— MIBSendDeleteRegister

— MIBSendCmipRequest

— MIBSendCmipResponse

However, the application program must be prepared to handle the invoking of
the read queue exit routine from the task that originated the MIBConnect
function.

¢ The MIBConnect and MIBDisconnect functions must be called from the same
task.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

¢ The application program must define the APPL definition statement and specify
the name that is to be used on the MIBConnect function. See [/O9)|
[Communications Server: SNA Resource Definition Referencd for more information
about the APPL definition statement.

— A separate APPL definition statement is needed for each MIBConnect function
that the application program is expected to perform. The application program
cannot call the MIBConnect function again without calling the MIBDisconnect
function first.

— Each successful call to the MIBConnect function that specifies the data space
vector parameter causes a new data space to be created. For more information
about the MIBConnect function, refer to [“MIBConnect—MIB connection|
[function” on page 56|

* No API functions can be issued from the TPEND exit routine or the read queue
exit routine.

Calls to API functions can be made from more than one subtask. However, the
application program is assumed to be terminated when the subtask that issued the
MIBConnect function terminates. When the task that issued the MIBConnect
function terminates, the ACB for the application program is closed automatically.

The ACB is not closed automatically if multiple tasks are used and a subtask that
meets the following conditions terminates:

¢ The subtask is using the APL

* The subtask did not open the connection with the MIBConnect function.

Format of APl messages

API messages have the following format:

API Header APItlv String

Figure 3. Format of APl messages

The type of message is determined by the first field in the API header. The string
follows the API header. The syntax of the string includes optional source
information, optional destination information, and a required message.

Description and example of the APl header

The API header is built for the application program when the application program
calls API functions that send messages to CMIP services. It is returned to the
application program when the message is sent from CMIP services to the
application program.

The API header begins in the first byte of the message. The length of the header
varies according to the size of the local identifier. If the message contains data in
addition to the API header, the data begins immediately following the API header.

The C language definition of the API header follows. Note that actual local

identifiers vary in size from one to eight bytes in length and can be of any data
type. It is declared as an eight-character array for simplicity.

Chapter 3. Overview of CMIP services API functions 45

46

Note: To facilitate reading on any host terminal and printing on any host printer,
trigraph sequences have been used for square brackets. These sequences are
“?22(” for left square bracket and “??)” for right square bracket.

typedef struct APIhdr_tag
{

unsigned char msg_type;

unsigned char api_version;

unsigned char origin;

unsigned char RESERVEDI; /* Application programs must not
use or depend on the value of
this field in any way. */

unsigned int invokeld;

unsigned int connectlId;

unsigned int numlLocallds;

time_t timestamp;

unsigned short resultCode;

unsigned char RESERVED2??(2??); /* Application programs must not
use or depend on the value of
this field in any way. */

unsigned int RESERVED3; /* Application programs must not
use or depend on the value of
this field in any way. */

unsigned char Tocallds??(827?);

} APIhdr;

The actual size of the API header associated with a particular message received
from CMIP services is determined by the size of the fixed part (all fields up to but
not including the locallDs field) plus the number of attached local identifiers times
the size of each local identifier. For this release, the number of attached local
identifiers is always one.

The actual size is a useful quantity since the string portions of the message start
immediately after the API header.

To make it easier to calculate the actual size, the APIhdrSize macro is provided in
the language header file, ACYAPHDH. Given the name of an APIhdr and the size
of the application’s local identifiers, it returns the actual size of an API header. The
following example shows the APIhdrSize macro:

#define MY_LOCAL ID SIZE 7
APThdr *APThdrl;

APIhdr APIhdr2;
size_t Sizel, Size2;

Sizel = APIhdrSize(*APIhdrl,MY_LOCAL_ID_SIZE);
Size2 = APIhdrSize(APIhdr2,MY_LOCAL_ID SIZE);

API header fields

A description of each field in the API header follows:

msg_type
Indicates the type and format of message to which this header is attached. An
API message can be an indication, a confirmation, or an OSI error. Messages of
type API_MSG, API_REG_ACCEPT, API_SVC_COMPLETE, or
API_SVC_ERROR contain a formatted string immediately following the API
header. This formatted string ends with X'00'".

API_TERMINATE_INSTANCE does not have a string, but X'00' is stored after
the local identifier for the convenience of the application program.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

CMIP services uses additional values internally for the msg_type field. These
values can appear in buffer trace records generated when an application
program calls a API function to send data to CMIP services.

Each of the possible msg_type values for APIhdr structure that can be received
by an application program is described in the following list.

API_MSG
A CMIP string or a response to a VTAM-specific request or response. An
example of a response to a VTAM-specific request is ACE.SubscribeRsp.
API_MSG is defined in ACYAPHDH. For a listing, refer to|Appendix A, “C]|
language header file (ACYAPHDH),” on page 229

API_REG_ACCEPT
Sent by CMIP services to indicate that the MIBSendRegister request
succeeded. API_REG_ACCEPT is defined in ACYAPHDH. For a listing,
refer to|Appendix A, “C language header file (ACYAPHDH),” on page 229.|

API_SVC_COMPLETE
Sent by CMIP services to indicate that the associated request was
processed correctly. This message is returned for unconfirmed CMIP
requests. API_ SVC_COMPLETE is defined in ACYAPHDH. For a listing,
refer to[Appendix A, “C language header file (ACYAPHDH),” on page 229.|

API_SVC_ERROR
Sent by CMIP services to indicate that the associated request could not be
processed. Examples of why it could not be processed are that the string
was incorrectly formatted or that there is no network path available to the
destination. A specific error code is provided in the message to assist in
diagnosing the problem.

In many cases, CMIP services records additional diagnostic information in
CMER VIT entry of the VTAM internal trace. See |z/OS Communications|
[Server: SNA Diagnosis Vol 2, FFST Dumps and the VIT| for information about
the CMER VIT entry. See for|z/OS Communications Server: SNA Diagnosis Vol
[, Techniques and Procedures| information about how to use the VTAM
internal trace.

API_SVC_ERROR is defined in ACYAPHDH. For a listing, refer to
[Appendix A, “C language header file (ACYAPHDH),” on page 229

API_TERMINATE_INSTANCE
Sent by CMIP services to indicate that the object has been deregistered.

API_TERMINATE_INSTANCE is defined in ACYAPHDH. For a listing,
refer to|Appendix A, “C language header file (ACYAPHDH),” on page 229.|

api_version
Reserved for use by CMIP services.

origin
Indicates where the message was generated and how the message should be
used. Each of the possible origin field values is described in the following list:

ORIGIN_OB]J
Response to a request that was previously submitted by the object
receiving the message. The receiving object can use the invoke identifier to
look up the previous request.

ORIGIN_REMOTE
Generated by another object and is a form of unsolicited request or linked

Chapter 3. Overview of CMIP services API functions 47

48

reply. The object receiving this message should use the invoke identifier
from the API header and the association data from the string to respond to
the message.

invokeld
Can be used to correlate requests and responses. If the origin field is set to
ORIGIN_OB]J, the invoke identifier field was generated by the application
program when a previous request was sent to CMIP services. If the origin field
is set to ORIGIN_REMOTE, the invoke identifier field was generated by a
remote object and must be returned in a response along with the association
handle so that the remote object can use it for correlation.

connectld
The connect identifier field is reserved for use by the APL

timestamp
Set by the API when a message is sent to CMIP services.

numLocallds
Specifies the number of local identifiers following the fixed-size portion of the
API header. This field is always zero or one.

resultCode
For API_SVC_ERROR messages, the error code is stored here. The same error
code also appears in the string.

locallds
Can contain a local identifier. A local identifier is a unique identifier for an
object and was provided to MIBSendRegister when that object was registered.
If a local identifer is present, it ranges in size from 1 to 8 bytes. The number of
bytes is determined by the application program and is specified in a parameter
passed to MIBConnect. This local identifiers field is passed back to the
application program unchanged by CMIP services.

Description and example of the string

Strings that are included in API_MSG messages begin with the following fields,
some of which are optional, depending on whether the API_MSG is a request,
indication, response, or confirmation, as shown in [Table 1 on page 49

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 1. Destination and source fields in string headers

Type of CMIP

message src-type field src field dest-type field dest field
Request Optional for subtree Optional. This is the Optional. This can be ~ Optional. This can be
managers, only. This is distinguished name, if any choice. any choice.
choice (2), if included. included.
This is never included
for application
programs other than
subtree managers.
Indication 1 assoc-handle Never included Never included
Response Optional for subtree Optional. This is the 1 assoc-handle
managers, only. This is distinguished name, if
choice (2), if included. included.
This is never included
for application
programs other than
subtree managers.
Confirmation 1 assoc-handle Never there Never there

The message field is the only field that must be provided on requests. Responses
and linked replies must be formatted with the association data that was provided
on the indication. (The indication is the request being answered.) The caller of the
MIBSendRequest function or MIBSendResponse function must build the string
with all fields. Other API functions do not require the caller to build the string
with all fields.

For API functions that build the string automatically, for example, the
MIBSendCmipRequest function, separate fields are provided to pass individual

fields that are placed in the string by the API function.

The syntax of the string header follows, in ASN.1 notation:

Header ::= SEQUENCE
{

src-type INTEGER -- source type

{
assoc-handle(1) -- association handle

} OPTIONAL,

src GraphicString OPTIONAL, -- source

dest-type INTEGER -- destination type

{
assoc-handle(1), -- association handle
full-dn(2), -- distinguished name
ae-title(3 -- AE title

} OPTIONAL,

dest GraphicString OPTIONAL, -- destination

msg GraphicString -- the message itself

}

The format of the required msg field in the string header is dictated by the syntax
of the message sent or received by the application program. The following example
shows a CMIP string, as received by an application program from CMIP services.
This string immediately follows the locallds field of the APIhdr structure.

Chapter 3. Overview of CMIP services API functions 49

50

src-type 1, src al,msg CMIP-1.ROIVapdu (invokeID 327686, operation-v
alue 3, argument (baseManagedObjectClass 1.3.18.0.0.1829, baseManage
dObjectInstance (distinguishedName (RelativeDistinguishedName (Attri
buteValueAssertion (attributeType 1.3.18.0.2.4.6, attributeValue "MY
NETID")), RelativeDistinguishedName (AttributeValueAssertion (attrib
uteType 1.3.18.0.0.2032, attributeValue "MYCPNAME")), RelativeDistin
guishedName (AttributeValueAssertion (attributeType 1.3.18.0.0.1984,

attributevValue "APPL1")))), synchronization bestEffort, scope (basi
cScope 0), filter (and ())))

Rules for the source and destination fields in the string

When messages are received from CMIP services through the API (on indications
and confirmations), the following rules apply:

* If the msg_type field in the API header is API_MSG, the src-type field in the
string header is set to 1 (assoc-handle) and the src field contains the association
handle over which the message arrived.

* If the msg_type field in the API header is not API_MSG, the source data is not
present.

e If the local identifier in the API header refers to a subtree manager and the
message is not targeted for that subtree manager, the dest-type field in the string
is full-dn and the dest field contains the distinguished name of the object
instance that is supposed to receive the message.

The application program does not normally build the src-type, src, dest-type, and
dest portions of the string, but instead relies on MIBSendCmipRequest and
MIBSendCmipResponse functions to build this portion of the string.

The src-type and src fields in the string header need to be provided only if the
object needs to override the distinguished name associated with the registered
object that is building the message.

The only acceptable src-type is distinguished name (0), which is the default. If the
src field is provided and it contains a distinguished name that is different from the
provider, the message contains a source override. Only a subtree manager can
specify a source name to override the source name in the string header. If an
application program that is not a subtree manager specifies a source, the message
is flagged with an error.

The dest-type and dest fields are not required. However, these fields can be used
to explicitly address messages when the syntax of the message does not contain
routing information or when the routing information is not understood by CMIP
services. If the CMIP standard is being used, explicit destination information is not
required because the destination is given in the managedObjectInstance field.

The same does not apply, however, to OSI responses prompted by an indication
and containing the same invoke identifier as the indication. When an object sends
a response, it must provide the association handle from the indication that
prompted the response.

Messages received by an object instance do not contain the dest-type and dest
fields.

The msg field in the string header contains the formatted string. The string must
begin with an ASN.1 module name and an ASN.1 syntax name. For all CMIP
flows, the module name is CMIP-1 because CMIP-1 is the name of the ASN.1
module that defines the syntaxes used for CMIP flows.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Following the module name is the type name. The module name and type name
must be separated by exactly one period; no other characters can be placed
between these names. The remainder of the message is defined by the ASN.1
syntax for the module and type specified.

Chapter 3. Overview of CMIP services API functions 51

52 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 4. CMIP services API function syntax and operands

This chapter describes all of the VTAM CMIP services API functions. Function
descriptions are arranged alphabetically.

For each function, an example of its use is given. These examples are not intended
to show the sequence of operations that an application program must perform as a

management application program. They merely show the syntax of calling the API
function.

Overview of API functions

lists the API functions and indicates the name of the module that must be
loaded before invoking an API function. Although logical names such as
MIBConnect and MIBSendRegister are used in the table, the physical names of the
API functions are the module entry point names.

The abbreviation N/A in the Module Entry Point column indicates that these are
the data space modules used for dequeueing or releasing the messages from the
data space. The addresses of these modules are returned on the MIBConnect
function. Refer to the data space vector format and the interface control block
(ISTNMICB) format in the [“MIBConnect—MIB connection function” on page 56|

The Type column indicates whether the function is synchronous or asynchronous.
For a description of these types, refer to [’Synchronous and asychronous functions”|

Table 2. API functions: module entry point, type, and where to find more information

Module entry More
API function point Type information
MIBConnect ACYAPCNP Synchronous Page @
MIBDisconnect ACYAPDI1P Synchronous Page I@
MIBSendRegister ACYAPRGP Asynchronous Page
MIBSendDeleteRegistration ACYAPDRP Asynchronous Page
MIBSendRequest ACYAPQRP Asynchronous Page
MIBSendCmipRequest ACYAPQCP Asynchronous Page
MIBSendResponse ACYAPRSP Asynchronous Page
MIBSendCmipResponse ACYAPCPP Asynchronous Page
Data space dequeue routine N/A Synchronous Page @
Data space release routine N/A Synchronous Page @

How the functions are coded

The functions are coded in the same format as C language functions. Parameters
are positional, and a value must be specified for each parameter to the function.
For some parameters, NULL (a pointer with value zero) may be specified instead
of some other value. Such parameters might be described as optional input under
the Declarations section for each API function.

© Copyright IBM Corp. 1995, 2008 53

Parameters are separated by commas. Parameter values must be specified in the
format listed in the declarations section.

For example, in the declarations section of the MIBConnect function, the following
line indicates that the API level must be specified as an unsigned integer:

unsigned int, /* API Tlevel - input */

In the parameter descriptions, the phrase “null-terminated string” means a
sequence of EBCDIC characters terminated by a byte containing zero, for example:

char *s1 = "Hello";
char s2[6] = {'H','e"','1','1", 'o', "\o'}

Refer to the appropriate C language publication for your operating system for
more information on operand formats.

How the functions are described

For each function, the following information is included:

* Purpose of the function

* Declarations for the function

¢ Descriptions of the parameters

* A list of return codes

* An example of how the function is coded in an application program

Completion information

54

If errors occur in CMIP services while processing a request or response, CMIP
services sends a MIB.ServiceError message to the object that originated the request
or response.

All of the functions have a return code that should be examined by the application
program. A value of zero means that the function was successful. Other values
alert the application program to incorrect parameters, resource shortages (for
example, memory allocation errors), and other problems.

The return codes for each API function are listed under Return codes in the section
for each function.

These return codes are used by VTAM CMIP services and appear in the CMER VIT
entry and in messages sent from VTAM CMIP services to the application

programs. See |z/0S Communications Server: SNA Diagnosis Vol 2, FFST Dumps and)
for information about the CMER VIT entry.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

shows which VIT entries are for each API function.
Table 3. VIT entries for each API function

API function VIT entry
MIBConnect MCO01 and MC02
MIBDisconnect MDIS
MIBSendCmipResponse MQRS
MIBSendCmipRequest MQRQ
MIBSendDeleteRegistration MDEL
MIBSendRegister MREG
MIBSendResponse MQRS
MiIBSendRequest MQRQ

Synchronous and asychronous functions

The return codes from synchronous functions indicate whether the function
completed successfully. MIBConnect and MIBDisconnect are synchronous
functions.

The return codes from asynchronous functions indicate only whether CMIP
services received the request or response. All API functions, except MIBConnect
and MIBDisconnect, are asynchronous functions.

All of the API functions that return an invoke identifier are asynchronous
functions. The invoke identifier can be used to correlate the response to the
original request. A return code of zero from the API function indicates that the
request was successfully sent to CMIP services. The confirmation from the target of
the request serves as the acknowledgement.

On confirmed requests, the object sending the request receives a MIB.ServiceError
message or a CMIP message (ROIVapdu, RORSapdu, or ROERapdu). On
unconfirmed requests, the object sending the request receives a MIB.ServiceAccept
message or a MIB.ServiceError message.

Since responses are never confirmed, the object sending the response receives a
MIB.ServiceAccept message or a MIB.ServiceError message.

Return codes are integers. A value of 0 always indicates success with no errors to
report. The actual confirmation or error report is returned by CMIP services by one
of the following methods:

e If using CSA storage, information is returned through the read queue exit
routine. See[“Read queue exit routine for the CSA interface” on page 88| for
details.

* If using data space storage, information is returned by calling the dequeue and
release routines returned in the data space vector field. For more information
about these routines, refer to [Chapter 6, “Dequeue and release routines for datal
[space storage,” on page 91|

Chapter 4. CMIP services API function syntax and operands 55

MIBConnect—MIB connection function

Purpose

The MIBConnect function returns a link identifier that is used to refer to the
connection in future calls to the APL

The MIBConnect function is a synchronous function. The return code from the
MIBConnect function indicates whether the function completed successfully.

The MIBConnect function opens an ACB on behalf of the caller. The ACB is closed
when the caller calls the MIBDisconnect function or when the task that called the
MIBConnect function terminates. The ACB is not closed when CMIP services
terminates or when VTAM terminates.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBConnect t(

unsigned int, /* API level - input */
int *, /* Tink identifier - output */
unsigned int, /* maximum outstanding invoke

identifiers - input */
const char =, /* application ACB name - input */
void =, /* TPEND routine pointer - optional input */
void =, /* read queue exit routine pointer - input */
unsigned int *, /* SMAE name buffer size - input/output */
char *, /* SMAE name buffer - output */
unsigned int *, /* System Object name buffer size -

input/output */
char =, /* System Object name buffer - output */
int, /* user data - input %/
unsigned int *, /% OPEN ACB error value - output */
char *x, /* VTAM release level - output */
const char =, /* password - optional input */
unsigned int, /* data space vector length - optional input */
ISTRIV1O t =, /* data space vector - optional input */
unsigned int, /* Tocal identifier length - input */
unsigned int); /* connection options - input %/

Parameters
API level

This parameter must be 0.

link identifier
MIBConnect returns a value in this field. The application program must
provide this value in subsequent API calls.

maximum outstanding invoke identifiers
This parameter determines how many unique invoke identifiers can be
generated locally by the APL Invoke identifiers are generated on all requests
that are sent to CMIP services and can be reused once the response has been
received by the requestor. API functions generate and clear invoke identifiers.
The caller of the API function does not need to generate or keep track of
outstanding invoke identifiers except where needed for its own
request/response correlation.

Note: Valid values are 256 to 65535. Input values are changed to meet the
minimum or maximum range.

56 z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

application ACB name
This parameter is a pointer to a null-terminated string that represents the
unique name associated with application. The name must be unique among
VTAM resources and must be defined on the APPL definition statement. It
must follow the naming rules that apply to application programs that open an
ACB.

The following APPL definition statement defines TOPOMGR as the application
program’s ACB name.

TOPOMGR APPL ACBNAME=TOPOMGR

See [z/0S Communications Server: SNA Resource Definition Reference| for
information about the ACBNAME operand on the APPL definition statement.

Note: The value of this parameter is converted to uppercase before being
passed to OPEN ACB.

TPEND routine pointer
This parameter is the address of an application assembler routine to be called
by VTAM if VTAM terminates before the application program terminates or
issues the MIBDisconnect function. Specify NULL if you do not wish to
provide a termination exit routine.

See [z/0S Communications Server: SNA Programming| for information about the
TPEND exit routine.

As with other TPEND exit routines, the application program should clean up
in an orderly manner for a normal HALT command. The application program
should deregister objects, discard EFDs, and disconnect.

In response to a HALT QUICK or HALT CANCEL command, the application
program should not attempt to clean up. It should only issue the
MIBDisconnect function.

Note: The ACBUSER field are set to the value of the user data parameter
supplied on the MIBConnect function when the TPEND exit routine is
scheduled.

read queue exit routine pointer
This parameter is the address of an application assembler routine to be called
by CMIP services when messages are to be received. See [Chapter 5, “Read|
lqueue exit routine,” on page 87 for information about the read queue exit.

SMAE name buffer size
This is the size of the buffer provided by the application for the SMAE name.
100 bytes is the recommended size for this buffer.

MIBConnect is set the value to the actual length (including the terminating
zero) on output.

If the buffer provided is not long enough, MIBConnect returns the
MB_ERR_STORAGE_TOO_SMALL return code. The application should allocate
a new buffer using the updated value of this parameter and call MIBConnect
again.

SMAE name buffer
MIBConnect places a pattern for building SMAE names in the storage pointed
to by this parameter. The application program can use this pattern with the C

Standard Library function sprintf to build the name of a SMAE name on this
host.

Chapter 4. CMIP services API function syntax and operands 57

58

The following example SMAE name format as returned by MIBConnect:
1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name SSCP1A);1.3.18.0.2.4.12=%s

Assuming that format is the name of a character array containing the format
string and AE is the name of a character array to hold the resulting SMAE
name, the following code will build a SMAE name that could be used for the
Register AE special CMIP Services request.

sprintf(AE, format, "MyApp1Name") ;

The name of the default SMAE provided by CMIP Services has OSISMASE as
the final attribute value in the distinguished name.

System Object name buffer size

This is the size of the buffer provided by the application for the System Object.
The recommended size for this buffer is 100 bytes.

MIBConnect sets the value to the actual length (including the terminating zero)
on output.

If the buffer provided is not long enough, MIBConnect returns
MB_ERR_STORAGE_TOO_SMALL. The application program should then
allocate a new buffer using the updated value of this parameter and call
MIBConnect again.

System Object name buffer

MIBConnect places the name of the System Object into this buffer.

The System Object name should be used when creating local EFDs; EFDs are
named “under” the System Object.

user data

This four-byte field is provided to the application program on entry to the read
queue and to the TPEND exit routines.

OPEN ACB error value

When control is returned to the application program and the return code is
MB_ERR_CONNECT, the OPEN ACB error value parameter needs to be
evaluated.

The following list shows the OPEN ACB error values returned in the OPEN
ACB error value parameter.

ERROR Field
Meaning
0 (X'00"
OPEN successfully opened this ACB.
4 (X'04")
The ACB has been opened.
20 (X'14"
OPEN cannot be processed because of a temporary shortage of storage.
36 (X'24")
The OPEN ACB failed for one of the following reasons:

* The password specified by the ACB did not match the
corresponding password in the APPL entry.

¢ The ACB did not specify a password and the APPL contains one.

* The security management product determined that the user is not
authorized to open the ACB.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

70 (X'46")
OPEN was issued in an exit routine.

80 (X'50")
VTAM has not been included as part of the operating system. The fault
lies in the system definition procedures.

82 (X'52")
VTAM is included as part of the operating system, but the VTAM
operator issued a HALT command, and VTAM has shut down. You
cannot attempt to establish a session or communicate with any LUs.

84 (X'54")
Either the address supplied in the ACB’s APPLID field lies beyond the
addressable range of your application program, or no entry is found in
the VTAM configuration tables that matches the name indicated by the
ACB’s APPLID field (or supplied by the operating system). If the
OPEN macroinstruction is specified correctly, your system programmer
might have:

* Failed to include your application program’s symbolic name during
VTAM definition

* Improperly handled the symbolic name

Refer to the description of the APPLID operand in the ACB
macroinstruction.

86 (X'56")
A match for your application program’s symbolic name is found, but it
is for an entry other than an APPL. If you specified this name in the
ACB’s APPLID field, verify that you have the correct name and
handled this name properly (see the APPLID operand of the ACB
macroinstruction). If the symbolic name is supplied by the operating
system, the supplied name is suspect.

88 (X'58")
Another ACB, already opened by VTAM, indicates the same
application program symbolic name that this ACB does. The system
programmer might have assigned the same symbolic name to two
application programs. This is valid only if the programs are not open
concurrently. Possibly the system operator initiated your program at
the wrong time.

90 (X'5A")
No entry is found in the VTAM configuration tables that matches the
name indicated by the ACB’s APPLID field (or supplied by the

operating system). This error might have occurred for one of the
following reasons:

¢ The VTAM operator deactivated the APPL entry.
* The APPL entry was never created.
¢ If VTAM is trying to recover for persistent sessions, the application
is not in pending recovery state.
92 (X'5C")
VTAM is included as part of the operating system but inactive.
94 (X'5E")
The address supplied in the ACB’s APPLID field lies beyond the
addressable range of your application program.

Chapter 4. CMIP services API function syntax and operands 59

95 (X'5F")
The VTAM transient being used by the application for an OPEN ACB
does not match the level of VTAM.

96 (X'60")
An apparent system error occurred. Either there is a logic error in
VTAM, or there is an error in your use of OPEN or CLOSE that VTAM
did not properly detect. Save all applicable program listings and
storage dumps, and consult IBM Service.

98 (X'62")
The APPLID length byte is incorrectly specified.

100 (X'64")
The address supplied in the ACB’s PASSWD field lies beyond the
addressable range of your application program.

102 (X'66")
The PASSWD length byte is incorrectly specified.

104 (X'68")
The APPLID field in the ACB identifies an application program that is
defined with AUTH=PPO in its APPL definition statement. Another

program with the same authorization is active. Only one program
defined with AUTH=PPO can be active at a time.

106 (X'6A")
The address supplied in the ACB’s vector list field lies beyond the
addressable range of your application program.

108 (X'6C")
The VTAM ACB vector list length byte is incorrectly specified.

112 (X'70")
You attempted to open an ACB that is in the process of being closed.
This can occur when a VTAM application program job step or subtask
is canceled or terminates abnormally. The process of closing the ACB
can continue after the job step or subtask has actually terminated.
Subsequently, if the job step is restarted or the subtask is reattached
before the ACB closing process has been completed, an OPEN
macroinstruction that is then issued for that ACB fails.

114 (X'72")
This code occurs when an OPEN ACB fails for an LU 6.2 application

with VERIFY=OPTIONAL or VERIFY=REQUIRED for one of the
following reasons:

* The security management product is not installed.
¢ The security management product is not active.

* The security management product resource class APPCLU is not
active.

* The application represented by the ACB is not in the security
management product Started Procedures Table.

116 (X'74")
VTAM rejected the takeover by an alternate application because the
original application did not enable persistence, although it is capable of
persistence.

118 (X'76")
OPEN failed because the specified application is in a recovery pending

60 z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

state and PERSIST=YES is not specified on the ACB that is being
opened. The OPEN may also fail if the application is in pending
terminate state and an active CDRSC with the same name has been
found in the sysplex.

120 (X'78")
ACB option mismatch between original application and opening
takeover or recovery application. One or more of the following can
apply:
¢ MACRF mismatch—both values must be either LOGON or
NLOGON; they cannot differ.

¢ NONAMES mismatch—Dboth applications must be specified as
NONAMES=YES or NONAMES=NO; they cannot differ.

* PERSIST mismatch—both applications must be specified as
PERSIST=YES.

* FDX mismatch—both applications must be specified as FDX=YES or
FDX=NO; they cannot differ.

* ISTVACS81 mismatch—the application capabilities vector provided by
the recovering application does not match that of the original
application.

140 (X'8C")
PERFMONR=YES is coded on the ACB but the application is not CNM
and POA authorized.

188 (X'BC")
The ACB is in the process of being opened or closed by another
request.

244 (X'F4")
The application program is not authorized for SRBEXIT=YES. A request
to open an ACB whose corresponding APPL definition statement
specifies SRBEXIT=YES is rejected unless the application program is
APF authorized, or using key 0-7, or in supervisor state.

246 (X'F6")
NIB storage address not valid. A CNM authorized application program
either failed to supply an NIB pointer in the NIB field of the ACB, or
the NIB address supplied lies beyond the addressable range of the
application program.

250 (X'FA")
NIB options not valid. Either an application program without CNM
authorization (specified in its associated VTAM resource definition)
supplied an NIB pointer in its ACB; or, if CNM authorized, the
application program failed to supply valid NIB options on the NIB
macroinstruction.

254 (X'FE")
Duplicate unsolicited RU routing requested. The CNM routing table
indicated that this application program was to receive the same
unsolicited formatted requests that were already being routed to
another active CNM authorized application program. Only one
application program can be actively receiving a particular type of RU
(for example, RECEMS) at a time.

VTAM release level
Indicates the address of VTAM release-level vector. See |z/OS Communications|
[Server: SNA Programming| for more information about the format of this vector.

Chapter 4. CMIP services API function syntax and operands 61

62

password

Specifies a pointer to a null-terminated string. The application program should
specify NULL if no password is to be supplied. If a password is specified on
PRTCT operand of the APPL definition statement, MIBConnect fails unless a
matching password is provided in the password parameter. Password
protection is to prevent a program from running as a predefined application
program without authorization.

The value of the password is specified on the PRTCT operand of the APPL
definition statement. The value must conform to the rules for coding this
operand described in the [z/OS Communications Server: SNA Resource Definition|
The maximum length is 8 bytes. Valid passwords contain only
alphanumeric characters.

If application program’s ACB name is TOPOMGR, the APPL definition
statement with a password is similar to the following example:
TOPOMGR APPL ACBNAME=TOPOMGR,PRTCT=password

Note: The value of this parameter is converted to uppercase before being
passed to OPEN ACB. This is because VTAM converts the related
definition to uppercase but does not convert OPEN ACB parameters to
uppercase. Without the conversion to uppercase by MIBConnect, this
function would fail if the application provided a lowercase value for this
parameter.

data space vector length

If using data space storage, specify a value that is at least the size of
(ISTRIV10_t), which is the length of the data space vector. If you are using
common storage area storage, specify 0. For an explanation of these types of
storage, see [‘Common storage area storage or data space storage?” on page 41

data space vector

If you are using data space storage, specify the address of the data space
vector (ISTRIV10_t). If you are using the CSA interface, specify NULL. If the
MIBConnect function is successful, the fields in this control block are set by
VTAM.

The format of the data space vector is:

Offset Meaning

0 (X'00"

Vector Length
1 (X'01")

Vector identifier = X'10'
2 (X'02")

Name of data space. (The field is 8 bytes long.)
10 (X'0A")

Address of interface control block (ISTNMICB)
14 (X'0E")

STOKEN for data space interface. This value is used in ALESERV MVS
macro to obtain the ALET value.
22 (X'16")
Reserved
26 (X'1A")
Address of the dequeue routine

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

30 (X'1E")
Address of the release routine

The ISTNMICB structure is allocated in the data space. The user application
must copy this structure into private storage for any future references because
the data space can be deleted at any time if VTAM is terminated. Referring to
the original after the data space has been deleted results in an abend. By
contrast, calling the dequeue and release routines using private copies of their
addresses causes an error indication to be returned. It is not valid to refer
directly to the data space through a means other than the dequeue or release
routine. Those routines should not be called after VTAM is terminated or after
issuing the MBDisconnect function.

The format of the interface control block (ISTNMICB) is:
Offset Meaning
0 (X'00"
Reserved
4 (X'04")
Addpress of the dequeue routine
8 (X'08")
Address of the release routine
local identifier length
Indicates the size of the local identifiers for this application program. The
range is 1—38.
connection options
Specify one of the following values:

NO_CONNECT_OPTIONS
Indicates that the application program is to use default behaviors for the
connection with CMIP services.

SHORT_NAMES
Indicates that CMIP services is to send distinguished names to the
application program in the short form. Otherwise, CMIP services sends
distinguished names to the application program in the long form. In either
case, the application program can format distinguished names in strings
sent through the API functions in either short or long form.

For a description of short and long names, refer to [“What form of

distinguished name?” on page 44/

Return codes

0 The MIBConnect function was successful, but warning messages might
have been issued. Check the OPEN ACB error value parameter for
warning messages. See the list of OPEN ACB error values on page

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

Chapter 4. CMIP services API function syntax and operands 63

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

MB_ERR_CONNECT
The MIBConnect was not successful. If the error condition indicated by the
OPEN ACB error value parameter can be eliminated, another MIBConnect
can be issued.

MB_ERR_INVALID_DS_VECTOR
The value specified for the data space vector length parameter is valid, but
the data space vector parameter is not provided.

MB_ERR_INVALID_API_LEVEL
An incorrect value for the API level parameter was passed.

MB_ERR_INVALID_APPL_NAME
The value specified for the application name parameter is longer than 8
characters.

MB_ERR_INVALID_CONNECT_OPTIONS
The value specified on the connection options parameter is not valid.
Specify either NO_CONNECT_OPTIONS or SHORT_NAMES as the value
for the connection options parameter.

MB_ERR_INVALID_DS_VECTOR_SIZE
If the data space vector parameter is specified, the data space vector length
must be at least the size of (ISTRIV10_t), which is the length of the data
space vector.

MB_ERR_INVALID_ENVIRONMENT
Data space storage was specified on the data space vector length
parameter, but the environment does not support data spaces.

MB_ERR_INVALID_ERROR_FLAG
The OPEN ACB error value parameter does not point to a valid storage
location.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a
valid connection.

MB_ERR_INVALID_LOCAL_ID_SIZE
The value specified on the local identifier length parameter is outside the
acceptable range of 1—38.

MB_ERR_INVALID_MAX_INVOKE_IDS
The value specified for the maximum outstanding requests parameter is
not valid.

MB_ERR_INVALID_PASSWORD
The value specified for the password parameter is not between 0 and 8
characters.

MB_ERR_INVALID_READ_QUEUE_EXIT
The read queue exit routine was not provided.

MB_ERR_INVALID_RELEASE_LEVEL
The value specified for the VTAM release level parameter is not valid.

MB_ERR_INVALID_SMAE_NAME
The value specified for the SMAE name buffer parameter is not valid.

64 2/0S VI1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

MB_ERR_INVALID_SMAE_NAME_SIZE
The buffer sent to the MIBConnect function is too small to accommodate
the name of the SMAE. The actual amount of storage required is returned
in the SMAE name length parameter.

MB_ERR_INVALID_SYSTEM_NAME
The value specified for the system object name buffer parameter is not
valid.

MB_ERR_INVALID_SYSTEM_NAME_SIZE
The buffer sent to the MIBConnect function is too small to accommodate
the name of the system object. The actual amount of storage required is
returned in the system object name buffer size parameter.

MB_ERR_INVALID_TPEND_EXIT
The TPEND exit routine is not valid.

MB_ERR_INVALID_USER_DATA
The user data parameter was not provided.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of function in an application program

The following example shows how the MIBConnect function can be coded in an
application program.
typedef struct ReadQueueExitData_tag

int ECB;

int ReasonCode;

char Buffer ?7(1638427);
} ReadQueueExitData_t;

typedef void xLocalld_t;

char SMAE 22(10077);
char SystemObject ?2(10077);
char *VTAM Release;

const char *AppTName;

const char *Password;

int LinkId;

int rc;

ReadQueueExitData_t ReadQueueExitData;
size_t SMAE_Size, SystemObjectSize;
unsigned int ACB_Info;

extern void ACYCMS2A(void);

extern void ACYCMS6A(void);

rc = APIs.MIBConnect (0, /* always zero for this release =/
&LinkId, /* MIBConnect will fill in LinkId
with a handle to the
connection. */
65536, /* maximum number of outstanding
requests */
App1Name, /* ACB name */
(void *)ACYCMS6A, /* TPEND exit */
(void *)ACYCMS2A, /* address of the Read
Queue Exit */
&SMAE_Size, /* On input, this is the size of

the SMAE buffer. On output,
this is the length of the SMAE
name. */
SMAE, /* This is where MIBConnect will
store the SMAE name (if there

Chapter 4. CMIP services API function syntax and operands 65

66

is enough room).

&SystemObjectSize,/* On input, this is the

SystemObject,

(int)&ReadQueueExitData, /* This will be provided

&ACB_Info, /*

&VTAM_Release,

Password, /*
0, /*
NULL, /*

size of the System Object name
buffer. On output, this is the

length of the System Object
name.

/* This is where MIBConnect will
store the System Object name

(if there is enough room).

to this application's read
queue exit by CMIP Services.
If an error occurs opening the
ACB, this will contain the
OPEN ACB error code. */
/* MIBConnect will store the
address of the VTAM release

Tevel here. */
ACB password */
dataspace not used */
dataspace not used */

sizeof(Localld t), /* size of Tocal ids

0); /%

for all objects registered by
this application */
no special options specified =*/

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

MIBDisconnect—MIB disconnection function

Purpose

The MIB disconnection function sends a message to the API to terminate the
session and clear all outstanding requests on the connection. There might be many
objects registered under one MIB connection and all outstanding requests for those
objects are cleared by the MIB disconnect service. The application program using
the CMIP services connection should not terminate the connection unless all
outstanding requests might be lost without damage to the registered objects.

MIBDisconnect is a synchronous service. The return code from the MIBDisconnect
function indicates whether the function completed successfully.

If you want to call a MIBConnect function with the same application ACB name as
the ACB name used on a previous MIBConnect function, you must call the
MIBDisconnect function before calling the MIBConnect function.

The MIBConnect function opens an ACB on behalf of the caller. The ACB is closed
when the caller calls the MIBDisconnect function or when the task that called the
MIBConnect function terminates. The ACB is not closed when CMIP services
terminates or when VTAM terminates.

If using data space storage, the data space is freed by VTAM. The application
program must not call the data space storage dequeue and release routines after it
calls the MIBDisconnect function, because the results are unpredictable and the
application program might abend.

Declarations
The following declarations indicate the order of the parameters for this function.

typedef int MIBDisconnect t(
int, /* Tink identifier - input */
unsigned int *); /* CLOSE ACB error value - output */

Parameters

link identifier
Specifies the link identifier returned by the MIBConnect function.

CLOSE ACB error value
When control is returned to the application program and the return code is
MB_ERR_MIBDISCONNECT, this flag needs to be evaluated.

The following list shows the CLOSE ACB error values returned in the CLOSE
ACB error value parameter.

ERROR Field
Meaning

0 (X'00"
CLOSE successfully closed the ACB.

4 (X'04")
A CLOSE macroinstruction has been successfully issued for this ACB
(or the ACB has never been opened in the first place).

20 (X'14")
CLOSE cannot be processed because of a temporary shortage of
storage.

Chapter 4. CMIP services API function syntax and operands 67

64 (X'40")
Outstanding OPNDST OPTCD=ACQUIRE is not released.

66 (X'42")
The ACB has been closed, but an apparent system error has prevented
the successful termination of one or more of the sessions that the
application program has. There is a logic error in VTAM; consult IBM
Service. The LUs that have not had their sessions terminated are not
available to other application programs, and LUs with which you were
requesting a session when the CLOSE macroinstruction was issued are
likewise unavailable. You can notify the VTAM operator (while the
program is running) of the situation so that the operator can make the
LUs available to other application programs.

70 (X'46")
CLOSE was not issued in the mainline program. OPEN and CLOSE
cannot be issued in any exit routine.

76 (X'4C")
This application program is authorized to issue VTAM operator
commands and receive VTAM messages. A CLOSE was issued, but
messages are still queued for it, or VTAM is waiting for a reply, or
both. See|z/OS Communications Server: SNA Programming| for more
information.

80 (X'50")
VTAM is no longer included as part of the operating system.

96 (X'60")
An apparent system error occurred. Either there is a logic error in
VTAM; or there is an error in your use of OPEN or CLOSE that VTAM
did not properly detect. Save all applicable program listings and
storage dumps, and consult IBM Service.

112 (X'70")
CLOSE was issued while the program was in the process of
terminating abnormally. The CLOSE is not necessary because the ACB
is closed by VTAM when the task terminates.

188 (X'BC")
The ACB is in the process of being opened or is in the process of being
closed by another request.

Return codes

0 The MIBDisconnect was successful, but warning messages might have been
issued. Check the CLOSE ACB error value parameter for warning
messages. See the list of CLOSE ACB error values on page |67

MB_ERR_MIBDISCONNECT
The MIBDisconnect function was not successful. If the error condition
indicated by the CLOSE ACB error value parameter can be eliminated,
another MIBDisconnect can be issued.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a
valid connection.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding

68 z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_INVALID_ERROR_FLAG

The CLOSE ACB error value parameter does not point to a valid storage
location.

Example of function in an application program

The following example shows how the MIBDisconnect function can be coded in an
application program.

int LinkId;

int rc;

unsigned int ACB_Info;

rc = APIs.MIBDisconnect(LinkId, /* This is the handle returned by
MIBDisconnect. */

&ACB_Info); /* If an error occurs closing the

ACB, MIBDisconnect will store
the CLOSE ACB error code here.x*/

Chapter 4. CMIP services API function syntax and operands 69

MIBSendCmipRequest—CMIP request function

70

Purpose

Use this function when an application program or object is sending a CMIP
request.

The MIBSendCmipRequest function queues a request to CMIP services. Use the
MIBSendCmipRequest function for CMIP requests instead of the MIBSendRequest
function, to allow consistent manipulation of messages.

Declarations

The following declarations indicate the order of the parameters for this function.
typedef int MIBSendCmipRequest_t(

int, /* Tink identifier - input */
unsigned int, /* argument type - input */
const char =, /* argument - input */
const void =, /* local identifier - input */
const char =, /* source - input */
unsigned int, /* destination type - input */
const char =, /* destination - input %/
unsigned int *); /* returned invoke identifier -
output */

Parameters

link identifier
Specifies the link identifier returned by the MIBConnect function.

argument type
This should be the CMIP operation value of the operation being requested.

The operation values are given in ACYIDCMS.

argument
This null-terminated string contains the bulk of the request. The ASN.1 type is
determined by the CMIP operation value of the request, and is found in the
ANY DEFINED BY table for the operation value in ACYIDCMS.

local identifier
Pointer to the local identifier of the object that generated this request. The
same local identifier appears in a subsequent response.

source
The distinguished name of the originator of the request. This can be used to
override the source of the message. This is used to resolve any appearance of
the MIB variable distinguished name. Specify NULL if you do not choose to
specify a value.

destination type
This specifies the type of destination data that is being proved in the
destination argument. The valid values are DS_NOT_PROVIDED,
DS_FULL_DN, DS_ASSOC_HANDLE, and DS_AE_TITLE.

If this field is set to DS_ZNOT_PROVIDED, then the stack uses the object name
in the CMIP parameter as the destination object name.

destination
This specifies the destination of a CMIP string. Specify NULL if the destination
type parameter is DS_NOT_PROVIDED. Otherwise, specify the pointer to a
distinguished name, association handle, or application entity title.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

returned invoke identifier
Specifies the invoke identifier. The invoke identifier is used to correlate this
request with a response that arrives subsequently.

Return codes
0 The function was successful.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_INVALID_ARGUMENT
The argument parameter was not provided.

MB_ERR_INVALID_ARGUMENT_TYPE
An incorrect argument type parameter was provided.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL
If using a data space and the data space is out of storage, this warning is
returned to remind the application program that no messages will be

returned to this application program. This message will still be routed to
CMIP services.

MB_ERR_INVALID_DEST
The value of the destination parameter is inconsistent with the value of the
destination type parameter. This return code is returned if, for example,
destination type is DS_ASSOC_HANDLE, but destination is NULL.

MB_ERR_INVALID_DEST_TYPE
An incorrect destination type parameter was passed.

MB_WARN_EXIT_FAILURE
If using common storage area storage and the application program has
indicated that it has had an unrecoverable error when returning to the read
queue exit routine, this warning is returned to remind the application
program that no messages will be returned to the application program.
This message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a
valid connection.

MB_ERR_INVALID_INVOKE_ID
The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING
A local identifier was not provided.

MB_ERR_INVALID_MAX_INVOKE_IDS
The value specified for the maximum outstanding requests parameter is
not valid.

Chapter 4. CMIP services API function syntax and operands 71

MB_ERR_MSG_MISSING
The message parameter was not provided.

MB_ERR_TRANSMIT

An apparent error occurred. Either there is a logic error in VTAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendCmipRequest function can be
coded in an application program.

char CMIP_StringArgument ?7(51277);

int LinkId;

int rc;

Localld_t *MyObjectId;

unsigned int Invokeld;

rc = APIs.MIBSendCmipRequest(LinkId, /* handle returned by
MIBConnect */
3, /* operation value is GET */
CMIP_StringArgument,
&MyObjectld,
NULL,
DS_NOT_PROVIDED,
NULL,
&Invokeld);

72 z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

MIBSendCmipResponse—CMIP response function

Purpose

Use this function when an application program or object is sending a CMIP
response. MIBSendCmipResponse queues responses to CMIP services associated
with requests that were previously received by the application program from CMIP
services.

Declarations

The following declarations indicate the order of the parameters for this function.
typedef int MIBSendCmipResponse_t(

int, /* Tink identifier - input */
unsigned int, /* invoke identifier - input */
unsigned int, /* last in chain - input */
unsigned int, /* success - input */
unsigned int, /* argument type - input */
const char *, /* argument - input */
const void =, /* Tocal identifier input */
const char x, /* source - input */
const char =, /* association handle - input */
unsigned int *); /* returned invoke identifier -
output */

Parameters

link identifier
Specifies the link identifier returned by the MIBConnect function.

invoke identifier
This is the invoke identifier of the request which is being responded to with
this API call.

last in chain
This indicates to CMIP services whether this message is the last response that
is generated by this application program for this request. This allows CMIP
services to construct the correct message (linked reply or response). A nonzero
value indicates that the response is the last in a chain of responses (RORSapdu
or ROERapdu). A zero value indicates that the response is not the last in a
chain of responses (ROIVapdu—Ilinked reply).

success
This indicates whether the response is positive or negative. This indicates to
CMIP services how to interpret the next parameter. A nonzero value indicates
that the response represents a positive, successful response. A zero value
indicates that the response is negative.

Note: If the last in chain parameter is zero, the success parameter must be
nonzero. A linked reply cannot be sent as an error.

argument type
For linked-replies (messages with the last in chain parameter set to zero), this
should be two, the CMIP operation value for a linked-reply.

For RORSapdu messages, this should be the CMIP operation value of the
operation being responded to.

For ROERapdu messages, this should be the CMIP error value.

The operation values and error values are given in ACYIDCMS.

Chapter 4. CMIP services API function syntax and operands 73

74

argument
This null-terminated string contains the bulk of the CMIP string which is built
by CMIP services, on behalf of the application program, for this API function.

For ROIVapdu messages (when the last in chain parameter is zero), this string
is used for the value of the argument parameter.

For RORSapdu messages (when the last in chain parameter is nonzero and the
success parameter is nonzero), this string is used for the value of the result
parameter.

For ROERapdu messages (when the last in chain parameter is nonzero and the
success parameter is zero), this string is used for the value of the parameter.

local identifier
Pointer to the local identifier of the object that is responding. Specify the same
identifier as the one specified in the request.

source
The distinguished name of the originator of the request. This can be used to
override the source of the message. This is used to resolve any appearance of
the MIB variable distinguished name. Specify NULL if you do not choose to
specify a value.

association handle
This is the association identifier of the association that is to be used to send the
response. It is required and must be the same as the association handle that
was received on the message that is being answered.

returned invoke identifier
Specifies the invoke identifier. The invoke identifier is used to correlate this
request with a response that arrives subsequently. This will be filled in only for
linked replies. For linked replies, the last in chain parameter is zero.

Return codes

0 The function was successful.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_ARGUMENT_MISSING
The argument parameter was not provided.

MB_ERR_ARGUMENT_TYPE_MISSING
An argument type parameter was not provided.

MB_ERR_ARGUMENT_TYPE_INVALID
An incorrect argument type parameter was provided.

MB_ERR_ASSOC_HANDLE_MISSING
The association handle parameter was not provided.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

MB_WARN_DATA_SPACE_FULL
If using a data space and the data space is out of storage, this warning is
returned to remind the application program that no messages will be

returned to this application program. This message will still be routed to
CMIP services.

MB_ERR_DEST_TYPE_INVALID
An incorrect destination type parameter was passed.

MB_WARN_EXIT_FAILURE
If using common storage area storage and the application program has
indicated that it has had an unrecoverable error when returning to the read
queue exit routine, this warning is returned to remind the application
program that no messages will be returned to the application program.
This message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a
valid connection.

MB_ERR_INVOKEID_MISSING
The invoke identifier parameter was not provided.

MB_ERR_LAST_IN_CHAIN_MISSING
The last in chain parameter was not provided.

MB_ERR_LOCAL_ID_MISSING
A local identifier was not provided.

MB_ERR_MAX_OUTSTANDING
The value specified for the maximum outstanding requests parameter is
not valid.

MB_ERR_SUCCESS_MISSING
The success argument parameter was not provided.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VTAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendCmipResponse function can be
coded in an application program.

#include "acyaphdh"

#define FALSE 0
#define TRUE 1

extern void *MylLocalld_ptr;

int rc;

int LinkId;

unsigned int Invokeld;
MIBSendCmipResponse_t *MIBSendCmipResponse;

/*******************************/

/* Send accessDenied ROERapdu. */

/*******************************/

rc = MIBSendCmipResponse(LinkId,
Invokeld, /* the invoke identifier from the request =/

Chapter 4. CMIP services API function syntax and operands 75

76

TRUE, /* Tast in chain (not Tinked reply)
FALSE, /* not successful (i.e., ROERapdu)
7,

"(invokeID 1179660, error-value 2)",
MyLocalld_ptr,

NULL,

"al", /* association handle of the request
being answered

NULL) ; /* no new invoke identifier since

last-in-chain is TRUE

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

*/
*/

MIBSendDeleteRegistration—Deregistration function

Purpose

The MIBSendDeleteRegistration deletes a registered object. Any objects registered
under the object being deleted are also deleted. An object’s registration can be
removed by local identifier or by distinguished name. Only one of them is
required. Both can be provided.

A non-NULL value in the distinguished name parameter indicates that a valid
distinguished name was provided.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBSendDeleteRegistration t(

int, /* link identifier - input */
unsigned int =, /* returned invoke
identifier - output */
const void =, /* local identifier - optional
input */
const char *); /* distinguished name - optional
input */

Parameters

link identifier
Specifies the link identifier returned by the MIBConnect function.

returned invoke identifier
Specifies the invoke identifier. The invoke identifier is used to correlate this
request with a response that arrives subsequently.

local identifier
Pointer to the local identifier of the object that is to be deleted. Specify NULL
for the local identifier parameter if only the distinguished name is provided.

distinguished name
This is the distinguished name of the object instance being deleted. If you
provide a local identifier, the distinguished name is optional. Specify NULL if
you do not provide a distinguished name.

If you specify a name for this parameter, CMIP services uses the name to look
up the object instance to be deleted or to verify that the object instance selected
with the local identifier has a matching name.

Return codes

0 The function was successful.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

Chapter 4. CMIP services API function syntax and operands 77

78

If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL
If using a data space and the data space is out of storage, this warning is
returned to remind the application program that no messages will be

returned to this application program. This message will still be routed to
CMIP services.

MB_WARN_EXIT_FAILURE
If using common storage area storage and the application program has
indicated that it has had an unrecoverable error when returning to the read
queue exit routine, this warning is returned to remind the application
program that no messages will be returned to the application program.
This message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a
valid connection.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VTAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendDeleteRegistration function can be
coded in an application program.

#include "acyaphdh.h"

int rc;

int LinkId;

MIBSendDeleteRegistration_t *MIBSendDeleteRegistration;

/*********‘k*"k"k**/

/* Delete a registration for the object with local */
/* identifier MyLocalld. */
R s ok 5 o ok ok o ok ok o ok ok ok o ok ok ok o ok s ok e o ok ok o ok ok o ok —

rc = MIBSendDeleteRegistration(LinkId,
&Invokeld,
&Mylocalld,
NULL);

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

MIBSendRegister—MIB asynchronous registration function

Purpose

The MIB registration function must be called at least once in order for an
application to access CMIP services or receive unsolicited messages. The MIB
registration function can be called many times on any given MIB connection. For
each call to the MIB registration function a unique local identifier must be
provided by the caller. The local identifier can be used to distribute messages to
the appropriate objects as they arrive over the connection. Because the local
identifier must be provided on the registration call, it could be a pointer to a
control block that could be directly referred to from the API header. The
application program might also provide a handle for secondary routing. The size
of the local identifiers is specified on the local identifier length parameter of the
MIBConnect function.

A registered object can be a create handler for zero or more object classes. In other
words, it can be responsible for handling CMIP create requests for instances of
certain classes.

An application program specifies this property for an object by providing a list of
classes on the call to MIBSendRegister when registering the object that is a create
handler.

The responsibilities of a create handler are described in [“Create handlers” on page]
which describes create processing.

A registered object is an instance of one specific object class. However, it can act
like an instance of other classes if appropriate. Allomorphism is the term used to
describe an object which can act like an instance of more than one class. The usual
reason for allomorphism is when an object acts like an instance of the classes of
which its class is a subclass.

An application program specifies this property for an object by providing a list of
classes on the call to MIBSendRegister when registering the object which acts
allomorphic to other classes.

A response will be generated by CMIP services for each call to the CMIP services
registration function. The invoke identifier field in the API header can be used to
correlate the response to the initial registration request. The response can be of two
possible types. If the registration was successful the response is of type
MIB.RegisterAccept, otherwise the response is of type MIB.ServiceError.

The application program must correlate the response from CMIP services to the
registration request, using the invoke identifier, and determine by the message type
in the API header whether or not the registration completed successfully.

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBSendRegister t(

int, /* link identifier - input */
unsigned int =*, /* returned invoke identifier -
output */
const void =, /* Tocal identifier - input */
const char =, /* object class - input */
int, /* name type - input */

Chapter 4. CMIP services API function syntax and operands 79

80

const char *, /* distinguished name - input */

const char =, /* name binding object

identifier - input */
unsigned int, /* capability flags - input */
unsigned int, /* allomorphs count - input */
char =, /* allomorphs array - input */
unsigned int, /* create handlers count - input =/
char x=); /* create handlers array - input =/

Parameters

link identifier
Specifies the link identifier returned by the MIBConnect function.

returned invoke identifier
Specifies the invoke identifier. The invoke identifier is used to correlate this
request with a response that arrives subsequently.

local identifier
Pointer to the local identifier of the object that is to be registered. Specify
NULL for the local identifier parameter if only the distinguished name is
provided.

object class
This parameter is the registered class of the object being registered. The class is
required on all registration calls.

name type
This must be DN_OF_INSTANCE.

distinguished name
This is the distinguished name of the object instance being registered. To use
the distinguished name in future calls to CMIP services, the &DN MIB variable
can be used to refer to the distinguished name associated with the object
instance (see ["MIB variable format” on page 98).

name binding object identifier
This is the object identifier for the name binding to be used. If NULL is
specified for this parameter, CMIP services chooses a name binding.

capability flags
A parameter used to specify special properties of the object being registered.

The value should be NO_CAPABILITIES if no special properties are desired or
SUBTREE_MANAGER if the object being registered should be a manager of
the subtree with its distinguished name as the root.

allomorphs count
This is the number of classes to which this object is allomorphic.

allomorphs array
This is an array of pointers to character strings, each of which is the object
identifier of a class to which this object is allomorphic.

create handlers count
This is the number of classes for which this object is a create handler.

create handlers array
This is an array of pointers to character strings, each of which is the object
identifier of a class for which this object is a create handler.

Return codes

0 The function was successful.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_INVALID_CAPABILITY_FLAGS
The value specified for the capability flags parameter is not valid.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

MB_ERR_DISTINGUISHED_MISSING
The distinguished name parameter was not provided.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a
valid connection.

MB_ERR_INVALID_INVOKE_ID
The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING
A local identifier was not provided.

MB_ERR_MAX_OUTSTANDING
The value specified for the maximum outstanding requests parameter is
not valid.

MB_ERR_NOT_REGISTERED
For common storage area storage, the application program has indicated
that it has had an unrecoverable error when returning to the read queue
exit routine or that the data space is out of storage. The registration will
not be allowed.

MB_ERR_OBJECT_CLASS_MISSING
The object class name parameter was not provided.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VTAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendRegister function can be coded in
an application program.

char MyObjectName 27(1202?);

int LinkId;

int rc;

Localld_t *MyObjectlId;

unsigned int Invokeld;

rc = APIs.MIBSendRegister(LinkId, /* This is the handle returned by
MIBConnect. */

&Invokeld, /* MIBSendRegister will store an

invoke id, or correlator, for

Chapter 4. CMIP services API function syntax and operands 81

82

&MyObjectId, /*

"1.3.18.0.0.2155",
DN_OF_INSTANCE, /*
MyObjectName, /=
NULL, /*
0, /*
0, /*
NULL, /*
0, /*
NULL) 3 /*

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

the registration request here.x/
This is the address of
the local id to be associated

with this object. */
/* This is the object

class of this object. */
This parameter must
have this value. */
This is the distinguished
name of this object. */
Use default name binding. */
no special capabilities */
no allomorphs */
no allomorphs x/
not a create handler for any
class */
not a create handler */

MiBSendRequest—MIB queue request function

Purpose

Use this function when an application program needs to send VTAM-specific
requests. For a list of these requests, refer to [Chapter 10, “VTAM-specific requests|
|and responses,” on page 133.|

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBSendRequest t(

int, /* link identifier - input */
unsigned int =, /* returned invoke identifier -
output */
const void *, /* Tocal identifier - input */
const char *); /* message - input */

Parameters

link identifier
Specifies the link identifier returned by the MIBConnect function.

returned invoke identifier
Specifies the invoke identifier. The invoke identifier is used to correlate this
request with a response that arrives subsequently.

local identifier
Pointer to the local identifier of the object that is issuing the request.

message
This is a pointer to a formatted string which contains the string header and the
request data.

Return codes
0 The function was successful.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL
If using a data space and the data space is out of storage, this warning is
returned to remind the application program that no messages will be

returned to this application program. This message will still be routed to
CMIP services.

MB_WARN_EXIT_FAILURE
If using common storage area storage and the application program has
indicated that it has had an unrecoverable error when returning to the read
queue exit routine, this warning is returned to remind the application

Chapter 4. CMIP services API function syntax and operands 83

84

program that no messages will be returned to the application program.
This message will still be routed to CMIP services.

MB_ERR_INVALID_INVOKE_ID
The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING
A local identifier was not provided.

MB_ERR_INVALID_MAX_INVOKE_IDS
The value specified for the maximum outstanding requests parameter is
not valid.

MB_ERR_MSG_MISSING
The message parameter was not provided.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VIAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendRequest function can be coded in
an application program.

int LinkId;
unsigned int Invokeld;
MIBSendRequest_t *MIBSendRequest;

/***/

/* Retrieve information on the association with handle al. */
/***/

rc = MIBSendRequest(LinkId,
&Invokeld,
&MylLocalld,
"msg ACF.GetAssociationInfo("
"handle 'al', info 11111111)");

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

MiBSendResponse—MIB queue response function

Purpose

Use this function when an application program needs to send a VTAM-specific
response to CMIP services. This function is not used to send ROIVapdu,
RORSapdu, or ROERapdu responses.

One message that is sent by MIBSendResponse is MIB.DeleteResponse. For a list of
these resi onses, refer to [Chapter 10, “VTAM-specific requests and responses,” on|

Declarations
The following declarations indicate the order of the parameters for this function.
typedef int MIBSendResponse t(

int, /* link identifier - input */
unsigned int, /* invoke identifier - output */
const void =, /* local identifier - input */
const char =, /* source - input */
const char =*, /* destination association

const char =x, handle - input */
const char *); /* message - input */

Parameters

link identifier
Specifies the link identifier returned by the MIBConnect function.

invoke identifier
This is the invoke identifier of the request which is being responded to with
this API call.

local identifier
Pointer to the local identifier of the object that is responding. Specify the same
identifier as the one specified in the request.

source
The distinguished name of the originator of the request. This can be used to
override the source of the message. This is used to resolve any appearance of
the MIB variable distinguished name. Specify NULL if you do not choose to
specify a value.

destination association handle
This is the association identifier of the association that is to be used to send the
response. It is required and must be the same as the association handle that
was received on the message that is being answered.

message
This is a pointer to a formatted string which contains the string header and the
response data.

Return codes

0 The function was successful.

MB_ERR_ALLOC
An error occurred allocating storage. If MB_ERR_ALLOC is received by the
application program from an API function and there is a corresponding
REQS record in the VIT with a nonzero return code, the LPBUF pool is not
large enough and should be increased.

Chapter 4. CMIP services API function syntax and operands 85

MB_ERR_ASSOC_HANDLE_MISSING
The association handle parameter was not provided.

MB_ERR_CMIP_SERVICES _INACTIVE
CMIP services is inactive.

If using common storage area storage, the read queue exit routine stops
functioning.

If using data space storage, messages are not put on the data space.

MB_WARN_DATA_SPACE_FULL
If using a data space and the data space is out of storage, this warning is
returned to remind the application program that no messages will be

returned to this application program. This message will still be routed to
CMIP services.

MB_WARN_EXIT_FAILURE
If using common storage area storage and the application program has
indicated that it has had an unrecoverable error when returning to the read
queue exit routine, this warning is returned to remind the application
program that no messages will be returned to the application program.
This message will still be routed to CMIP services.

MB_ERR_INVALID_LINK_ID
The value specified on the link identifier parameter does not refer to a
valid connection.

MB_ERR_INVALID_INVOKE_ID
The invoke identifier parameter was not provided.

MB_ERR_LOCAL_ID_MISSING
A local identifier was not provided.

MB_ERR_MSG_MISSING
The message parameter was not provided.

MB_ERR_TRANSMIT
An apparent error occurred. Either there is a logic error in VIAM, or the
MIBDisconnect function has been issued, but it has not completed.

MB_ERR_VTAM_INACTIVE
VTAM is inactive.

Example of function in an application program

The following example shows how the MIBSendResponse function can be coded in
an application program.

const char *AssocHandle;

int LinkId;

int rc;

void xLocalld;

unsigned int Invokeld;

rc = MIBSendResponse(LinkId,Invokeld,

Localld,NULL,AssocHandTe,,
"MIB.DeleteResponse(1,processingFailure)");

86 z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 5. Read queue exit routine

For the common storage area (CSA) interface, the read queue exit routine is
entered when VTAM CMIP services needs to notify or send data to the application
program.

For the data space interface, the read queue exit routine is entered when VTAM
CMIP services needs to notify the application program that:

* There are messages on the data space to be read

e CMIP services is terminating

¢ The data space is full

The requirements for callers of the read queue exit routine are:

Location
User private

Key Same key that was used when the MIBConnect function was called
State Supervisor state

AMODE
31-bit

Residency mode
Any

ASC mode
Primary

Interrupt status
Enabled

Dispatchable unit mode
TCB

Locks No locks held
ENQs No ENQs held

@space
Same address space from which MIBConnect was issued

The data passed to the read queue exit routine is located in CSA storage and is
allocated in the same key that was used when the MIBConnect function was
called. The data is not fetch protected, so any key can be used to copy it. The read
queue exit routine should not attempt to free any storage passed to it. Storage is
freed automatically when the exit routine terminates. Application programs can
vary depending on product data and queuing structures. The following list gives
recommendations for the read queue exit routine:

* Use the contents of the user data field located in register 6 to set up the
environment. This field can be the address of an autodata area to improve
performance, or it can be NULL.

* Save the calling application program’s registers in the provided save area.

¢ Check the VTAM reason codes to determine why the exit routine was called and
what action should be taken. For a list of reason codes, refer to |“VTAM reasogl
codes (for data space)” on page 89 and [“VTAM reason codes (for CSA)” on pagel
88,

© Copyright IBM Corp. 1995, 2008 87

Read queue exit routine for the CSA interface

88

This section describes how the read queue exit routine is called for the application
program when CSA storage is used for receiving data from CMIP services.

VTAM reason codes (for CSA)

Reason code
Explanation

0 Data is being passed to the read queue exit routine.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services has terminated. Signal the application program main task to
issue the MIBDisconnect function. No data is passed for this reason code.

Note: Your read queue exit routine should be coded to ignore unrecognized reason
codes and set the return code to 0.

For a reason code of zero, copy any data presented from CSA storage to private
storage. Then queue the copied data to the appropriate task. CMIP services
examines the return code only if the read queue exit routine is driven with a
reason code of 0. Set register 15 as follows:

Return code

Explanation
0 The read queue exit routine was successful.
8 The read queue exit routine had a temporary internal processing failure;

for example, it is out of storage.

CMIP services builds an ROER if the message passed to the exit is a
confirmed request of type ROIVapdu. The read queue exit routine
continues to function.

16 The read queue exit routine had a permanent internal processing failure.

CMIP services builds an ROER if the message passed to the exit routine is
a confirmed request of type ROIVapdu. It also builds these ROERs for any
subsequent confirmed ROIV requests until the application program
disconnects from the APIL. The read queue exit routine does not continue to
receive data. It is driven again only if CMIP services terminates of if
application program calls the MIBDisconnect function and then calls the
MIBConnect function again.

Registers upon entry (for CSA)

The following list shows the registers upon entering the read queue exit routine.

Register
Contents
1 Address of variable length parameter list. The end of the parameter list is

indicated by the number 1 in the high-order bit of the last word. For
details about the parameter list, refer to [‘Parameter list (for CSA)” on page|

Q
>
O

6 Contents of the user data field that was passed on the MIBConnect
function.
13 Address of an 18 fullword save area.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

14 Return address.

15 Entry point address of the exit routine.

Registers upon termination (for CSA)

The following list shows the registers upon terminating the read queue exit
routine.

Register
Contents

0-14 Unchanged, restored to values on entry.

15 Return code:
0 Successful; input data processed.
8 Unsuccessful; storage failure.
16 Unsuccessful; terminate the exit routine.

Parameter list (for CSA)

The following list shows the parameter list for the read queue exit routine. The
decimal value is first, followed by the hexadecimal value in parentheses.

Offset Description
0 (00 VTAM reason code. For a list, refer to|“VTAM reason codes (for CSA)” on|

4 (4) Address of API header.

8 (8) Address of string header. Refer to|“Description and example of the string”]

for details.

12 (C) Length of API header + string header + CMIP string. Four-byte field that
represents the length of the total data to be copied.

Read queue exit routine for data space storage

This section describes how the read queue exit routine is called for the application
program when data space storage is used for receiving data from CMIP services.

VTAM reason codes (for data space)

Reason code
Explanation

MB_DATA_ON_DATA_SPACE
CMIP services has placed one or more messages in the data space.

MB_WARN_DATA_SPACE_FULL
Data space storage is full. Signal the appropriate application task to issue
the MIBDisconnect function.

MB_ERR_CMIP_SERVICES_INACTIVE
CMIP services has terminated. Signal the appropriate application task to
issue the MIBDisconnect function.

Note: Your read queue exit routine should be coded to ignore unrecognized reason
codes and set the return code to 0.

Chapter 5. Read queue exit routine 89

Read queue exit for data space

90

Contents of register 15 are not examined when read queue exit routine returns.
Any messages in the data space are the responsibility of the application program.
CMIP services does not perform any special processing to build ROERs for these
messages. The read queue exit routine continues to be driven every time the
number of waiting messages in the data space goes from zero to one until the
application program disconnects from the APL

Registers upon entry (for data space)

The following list shows the registers upon entering the read queue exit routine.

Register
Contents
1 Address of variable length parameter list. The end of the parameter list is

indicated by the number 1 in the high-order bit of the last word. For
details about the parameter list, refer to [‘Parameter list (for data space).”]

6 Contents of user data field which was passed on the MIBConnect function.
13 Address of an 18 fullword save area.

14 Return address.

15 Entry point address of the exit.

Registers upon termination (for data space)

The following list shows the registers upon terminating the read queue exit
routine.

Register
Contents

0-14 Unchanged, restored to values on entry

15 Zero

Parameter list (for data space)

The following list shows the parameter list for the read queue exit routine. The
decimal value is first, followed by the hexadecimal value in parentheses.

Offset Description

0 (00 VTAM reason code. For a list, refer to[“VTAM reason codes (for datal
fspace)” on page 89|

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 6. Dequeue and release routines for data space

storage

The dequeue routine retrieves messages from the data space, one at a time.

The release routine frees the data space storage for each message that has been
processed.

The release and dequeue routines are non-reentrant per application program.

This chapter describes:

* Format of data on the data space

* Dequeuing a buffer with the dequeue routine
* Releasing a buffer with the release routine

Format of data on data space

The format for data on data space storage is shown in the following list. The
decimal value is first, followed by the hexadecimal value in parentheses.

Offset Description

0 (0) Address of API header (within data space). Refer to the declaration of
APThdr in ACYAPHDH under [Appendix A, “C language header file|
(ACYAPHDH),” on page 229

4 (4 Address of string header (within data space). Refer to[“Description and|
fexample of the string” on page 48| for details.

8 (8) Length of API header + string header + CMIP string. This is a 4-byte field
that represents the length of the total data to be copied.

The requirements for callers of the read queue exit routine are:

Location

User private
Key Key 6
State Supervisor state
AMODE

31-bit
Residency mode

Any
ASC mode

Access Register mode

Interrupt status
Enabled

Dispatchable unit mode
TCB

Locks No locks held
ENQs No ENQs held

© Copyright IBM Corp. 1995, 2008 91

@space
User address space

Dequeueing a buffer with the dequeue routine

When the application program is notified by the read queue exit routine that data
is on the data space (MB_DATA_ON_DATA_SPACE), the application program
must call the dequeue routine to receive the data. The dequeue routine dequeues
the buffer until register 0 returns a 0 buffer count.

The dequeue routine address is returned on the MIBConnect function in the
interface control block. For information about the data space vector parameter,
refer to page

Input to the dequeue routine

This routine is serially reusable per queue. If the application program attempts to
overlap execution of this routine, the results are unpredictable.

General registers

Explanation

0 Value of the field RIVIONMI in the ISTRIV10_t structure filled in by
MIBConnect.

1 Unused

2-13 Undefined

14 Return address

15 Entry point address

Access registers

Explanation
0 Undefined
1 ALET for interface data space
2-15 Zero

Output for dequeue routine

General registers

Explanation
0 Count of remaining buffers
1 Address of buffer that is in the data space or zero if no buffer exists

2-13 Restored to input values

14 Return address

15 Return code:
0 Buffer is dequeued. The address is in register 1.
8 No buffers available.

16 VTAM is terminating. The application program’s TPEND exit
routine is driven. Do not continue calling the interface routines.
Cease all reference to interface control blocks.

92 2/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

Access registers

Explanation
0 Undefined
1 ALET for interface data space

2-14 Restored to input value
15 Undefined

Releasing a buffer with the release routine

To release a previously dequeued buffer, the application program must call the
release routine. The release routine address is returned on the MIBConnect
function in the interface control block. For information about the data space vector
parameter, refer to page

This module is serially reusable per queue. If the application program attempts to
overlap execution of this module, the results are unpredictable.

Input to the release routine

General registers

Explanation

0 Value of the field RIVIONMI in the ISTRIV10_t structure filled in by
MIBConnect.

1 Address of buffer to be released

2-13 Undefined

14 Return address

15 Entry point address

Access registers

Explanation
0 Undefined
1 ALET for interface data space
2-15 Zero

Output to the release routine

General registers
Explanation

0-1 Undefined

2-13 Restored to input values

14 Return address
15 Return code:
0 Buffer released.

16 VTAM is terminating. The application program’s TPEND exit
routine is driven. Do not continue calling the interface routines.
Cease all reference to interface control blocks.

Chapter 6. Dequeue and release routines for data space storage 93

Access registers

Explanation
0 Undefined
1 ALET for interface data space

2-14 Restored to input value
15 Undefined

Abnormal exits
If the buffer being released is either not allocated or is incorrect, the results are
unpredictable.

94 z/0S VI1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 7. Rules for constructing standard CMIP strings

This section describes how to look at the ASN.1 source files and read the syntax to
enable you to build a string that can be sent to CMIP services. Almost all of the
data types supported by ASN.1 are supported by VTAM CMIP services. VTAM
CMIP services does not support the following data types:

* GraphicString (except for the default character set, which is supported)
 TeletexString and VideotexString

* EXTERNAL data type

* Contained subtypes

* Inner subtyping

* Real value

 Constructed value

* Named bit strings

Overview

CMIP services includes a management information base (MIB) application program
interface (API), which application programs use to send information to CMIP

services. Application programs send data to CMIP services by using API functions,
which are described under [Chapter 3, “Overview of CMIP services API functions,”

The data sent in some of the parameters of the API functions can be in

any format that is accepted as standard ASN.1 syntax. ASN.1 syntax is the data
definition language used by OSI management.

This section describes how application programs can send data to CMIP services
(using the API functions) and how CMIP services sends data to application
programs.

The application program can send strings that are composed of values that are
specified according to the rules in the ASN.1 syntax. For a particular ASN.1 syntax,
an application program has some flexibility in the exact format of a string.

CMIP services returns information to application programs in a specific format. For
example, when the application program sends a string to CMIP Services that
includes a BOOLEAN value, the application program can use a variety of formats.
But when CMIP services sends a BOOLEAN value in a string to the application
program, CMIP services uses only one format for BOOLEAN values.

How application programs format data to be sent to CMIP services

When calling the MIBSendRequest or MIBSendResponse functions, the application
program provides a zero-terminated string that includes the following:

e The word msg

* Ablank

¢ The name of an ASN.1 module

* A period

¢ The name of a type within that ASN.1 module

* Values for all of the fields associated with that type

© Copyright IBM Corp. 1995, 2008 95

96

For example, the following zero-terminated string could be passed as the fourth
parameter to the MIBSendRequest function.

"msg ACF.Release (al)"

When calling the MIBSendCmipRequest or MIBSendCmipResponse functions, the
application program provides a zero-terminated string that includes only the
values for all of the fields associated with the type listed in the ANY DEFINED BY
table for the specified operation-value or error-value.

For example, to send a GET request by the MIBSendCmipRequest function, the
second parameter of the MIBSendCmipRequest function should be three
(operation-value for GET) and the third parameter of MIBSendCmipRequest
function could be the following zero-terminated string:
"(baseManagedObjectClass 2.9.3.2.3.13,"

" baseManagedObjectInstance "

" (distinguishedName "

! '1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name GEORGE)'),"
" attributeldlList (2.9.3.2.7.35,2.9.3.2.7.5))"

Each value is made up of a <label> <value> pair. The <label> is the identifier that
appears in ASN.1 NamedTypes. See clause 12.5 of ISO-8825 for the formal
definition of a NamedType.

In the following example, a, b, and c are possible labels. For the field with data
type D, the type name is used as a label. Using the type name as a label is
necessary only when the ASN.1 syntax was defined without labels for all SET and
SEQUENCE fields. If the type name is used for a data type that has a label, the
type name is rejected.
A ::= SEQUENCE
{ a INTEGER,
b OBJECT IDENTIFIER,
cC,
D

}

Labels can always be specified, but they are required only to resolve ambiguity in
the ASN.1 definition. Because it is difficult to know when ambiguity exists, use the
following rules when building strings to send to CMIP services:

* Labels are required on members of a SET construct, because the members of the
SET can be specified in any order.

* Alabel is required to resolve a CHOICE; otherwise CMIP services cannot
determine which choice was selected by the application program.

e It is recommended that members of a SEQUENCE be identified with a label.
Labels are required only in situations where an optional member is intentionally
omitted and subsequent members follow. However, unless every member of a
sequence is specified, or the optional members that are intentionally omitted are
located at the end of the SEQUENCE, it is simpler to identify all members with
a label.

* Elements of a SET and SEQUENCE and the element of a CHOICE are
surrounded by parentheses.

The <value> portion of the <label> <value> pair can be specified in the following

ways:

* Primitive data types, such as BOOLEAN and INTEGER, that are not composed
of one or more instances of other data types

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

 Constructed data types, such as SEQUENCE and SET

* Hexadecimal basic encoding rules (BER), which can be used for all ASN.1 types
except CHOICE and ANY DEFINED BY.

Any of the five following formats are recognized by CMIP services, but CMIP
services always returns explicit value notation if there are no insurmountable
errors encountered during the decoding of incoming strings. If errors are
encountered, the hexadecimal BER format explained in [“Hexadecimal BER format”|

fon page 100]is used.
Explicit value format

In the explicit value format, the actual value of the primitive data type is given.
For example, an application program can specify 1234 as the value of an INTEGER
data type. Each of the primitive data types has a unique explicit value notation
and these are explained in ['Primitive ASN.1 data types” on page 101] Examples
are TRUE and FALSE for BOOLEAN types, -3.125 for REAL types, and 1001001 for
BIT STRINGS.

Values can be formatted and sent to the API enclosed in single or double quotation
marks. Quotation marks are required if the value contains a space. Use the same
kind of quotation mark to begin and end the value. The quotation marks are
ignored by CMIP services.

ASN.1 value format

The value format is based on an ASN.1 module, as shown in the following
example.

A ::= INTEGER

INTEGER ::
INTEGER ::
INTEGER ::
A

o0 oo
[U | | [

B w N -

B ::= SET {
f [1] INTEGER,
g [2] INTEGER,
h [3] INTEGER
}

C ::= SEQUENCE {
f [1] INTEGER,
g [2] INTEGER,
h [3] INTEGER
1

Values for A may be specified as:
a
b
d
12
Values for B may be specified as:
(f a, hd, g 34)
(h 138, f d, g 34)
Values for C may be specified as:
(c, 12, 19)
(f ¢, 12, h 19)
(f c, g 12, h 19)

The application program can specify a, b, ¢, or d as the <value> portion of a
<label> <value> pair. If the value appears in a context that might be ambiguous,

Chapter 7. Rules for constructing standard CMIP strings 97

98

such as for the value of the g field in the SET B, the appropriate <label> must
accompany the <value>. The labels can be omitted when specifying values for C,
because there is no ambiguity. The labels can never be omitted when specifying
values for B, because A is optional and without a label for B, it is not possible to
determine whether the value is for A or B.

CMIP services, using information from the compiled ASN.1 modules, verifies that
the value and type are compatible.

MIB variable format

MIB variables are values that can be set in CMIP services by an object, and then
referred to later in a string. These values can be specified as MIB variables by the
application program in any string. CMIP services substitutes the actual values.

MIB variables are denoted with an ampersand (&) as the first character of the
variable name. The API checks to make sure that the type of the MIB variable and
the type of the type reference are compatible.

CMIP services includes a set of predefined MIB variables that can be used in any
string, by any object:

&DN Represents the distinguished name of the originator of a string that is
passed to the APIL. The API uses its knowledge of the source of the string
to provide the appropriate distinguished name. The name can be used by
an object that is registered with CMIP services to identify itself when it
sends a string. The API supplies the distinguished name that corresponds
to the local identifier provided on the request.

&IID Represents the invoke identifier of the current string. This can be used in a
response or when initiating a request. On requests, this MIB variable
allows the sender of a string to build the string without knowing the
invoke identifier. For all requests, the invoke identifier is not required
because the MIB functions assign the invoke identifier after they receive
the string. Therefore the API can fill in the value for the invoke identifier
once it has been assigned.

>M
Represents the current time in Generalized time format. For more
information, refer to [“Time types” on page 112.|

yyyy/mm/dd-hh:mm:ss.0

&UTM
Represents the current time in Universal time format. For more
information, refer to [“Time types” on page 112.|

yyyy/mm/dd-hh:mm:ss.0

&OC Represents the managed object class of the originator of the string. This
variable allows the application program to use generic strings in
responding to requests, without having to customize them for each object
class it supports. In any response from an unregistered object or when
allomorphism is being exercised, this variable cannot be used.

The following example shows how to use these MIB variables:

Arg =
"(managedObjectClass &O0C, "
" managedObjectInstance (distinguishedName &DN), "
" currentTime >M, "
" attributelList ((attributeld 2.9.3.2.7.5, "

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

" (distinguishedName
" (((attributeType 1.3.18.0.2.4.6, "
" attributeValue MYNETID), "
" (attributeType 2.9.3.2.7.4, "
" attributeValue (name \"MYCPNAME\"))))))."
" (attributeld 2.9.3.2.7.35, enabled) "

n) n

rc = MIBSendCmipResponse(LinkId,
0ldInvokeld,
1, /* last in chain =/
1, /* success */
3, /* GET response =*/
Arg,
Localld ptr,
NULL,
01dAssocHandle,
NULL) ;

CMIP Services substitutes the appropriate values for the variables &OC, &DN, and
>M.

Note: The many extra spaces in the response string will be ignored by CMIP
services, though they will lead to extra processing overhead.

Constructed value format
The constructed types, SET, SEQUENCE, SET OF, and SEQUENCE OF and the
CHOICE types use constructed value format. In this format, the value of a <label>
<value> pair is surrounded by parentheses and contains other <label> <value>
pair specifications separated by commas, as is shown in the following ASN.1

definition:
A ::= SEQUENCE
a INTEGER,
b BIT STRING,
c BOOLEAN

}

The invoking application program specifies the following across the API:
(a 12, b 11011011, c TRUE)

To nest constructed data types, use multiple sets of parentheses. Note that the
number of parentheses does not correspond directly to the number of braces in the
ASNL.1. It corresponds to the number of constructed data types that occur. For
example, an application program could specify

(a 12, b (1, 2, 3, 4), c TRUE, d (111, 1101110, 11000))

to be sent to the API to correspond to the following ASN.1 definition:

A ::= SEQUENCE
{

a [0] INTEGER DEFAULT 0,
b [1] SEQUENCE OF INTEGER,
c [2] BOOLEAN OPTIONAL,
d [3] B
}
SEQUENCE OF C
BIT STRING

o~}
n n

Chapter 7. Rules for constructing standard CMIP strings 99

100

The numbers specified in square brackets in the ASN.1 of the previous example
refer to the tagging that is used when exchanging strings between systems.
Because the identifier of the named type (in this case, a, b, ¢, or d) corresponds
not only to the type reference but also to the tagging, it is not necessary to specify
the tagging across the API. Tags are determined automatically by CMIP services.

The words DEFAULT and OPTIONAL in an ASN.1 definition indicate that those
fields can be omitted in an instance of type reference A. DEFAULT means the field
a can be omitted. If it is omitted, CMIP services interprets the field as having a
value the default value specified in the syntax. In the previous example, zero is
assigned to the field with label A. If it is not omitted, CMIP services does not
assign DEFAULT fields default values. Application programs that receive strings
containing DEFAULT fields must be able to understand and interpret the omission
of the field.

OPTIONAL means that the field ¢ does not have to be specified. When it is not
specified, CMIP services does not interpret the field.

Hexadecimal BER format

Hexadecimal BER format is the hexadecimal value contained in the BER, enclosed
in angle brackets. Hexadecimal BER format is the final format that can be used to
specify a value. In some cases when CMIP services cannot decode a string sent by
another CMIP services, CMIP services sends the string to the application program
in hexadecimal BER format.

In this format, the value is enclosed in less than (<) and greater than (>) symbols,
and consists of zero or more hexadecimal digits. In all but one case, the
hexadecimal digits represent the BER encoding of the <value> portion of a
particular field. For example, the value of a BOOLEAN in BER is specified as a
single octet, with nonzero values representing true. An octet is a byte. To specify a
true value for field fred to the API in hexadecimal BER format, the application
program specifies:

. fred <01> ...

When specifying a value for an ANY type, the application program is required to
specify the entire BER field, including the tag, length, and value portions. It cannot
specify only the value, because the ANY type cannot understand what the possible
types are. For example, if the same application program specifies a BOOLEAN
value of true to the API for a field called fred that is an ANY type, the following
should be specified:

. fred <010101> ...

In this example, the first octet represents the tag, which is a universal tag for
BOOLEAN. For a full description of how BER tags are encoded see the BER
standard.

The second octet represents the length of the value portion, a length of 1 octet, and
the value is as specified previously.

An application program should not use hexadecimal BER when sending
information to the API, because error and subtype checking that is normally
performed by the API code is not applied to the BER value. The value is assumed
to be correctly formed and is inserted into the BER buffer at the appropriate
location.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Another potential problem is the use of the hexadecimal BER format for ANY
types, because improper tags and lengths can be introduced. Hexadecimal BER
format is necessary when an INTEGER that is longer than four octets needs to be
shipped. Hexadecimal BER allows the application program to circumvent any
limitations imposed by the API, but you might encounter problems.

When CMIP services receives strings from an application program, CMIP services
attempts to decode the strings into a combination of explicit values and
constructed values. During decoding, if CMIP services encounters an error in a
primitive data type, CMIP services sends to the application program the value for
that type in hexadecimal BER format. For example, if the contents of an INTEGER
field are too large to fit within four octets, CMIP services sends the application
program the INTEGER value in hexadecimal BER format.

If CMIP services encounters an error in a constructed data type or a decision data
type, such as ANY DEFINED BY or CHOICE, CMIP services sends the application
program the entire contents of the constructed or decision type in a single
hexadecimal BER value. For example, if CMIP services does not recognize the
value of an OBJECT IDENTIFIER, the OBJECT IDENTIFIER value is sent to the
application program in hexadecimal BER format.

Primitive ASN.1 data types

Primitive types within ASN.1 are those types that are not constructed or cannot be
broken down into more primitive types. They correspond to the normal data types
encountered in many programming and data definition languages.

The term primitive type should not be confused with primitive encoding as defined in
the BER standard. Some primitive types, such as BIT STRINGs, can actually be
encoded in a constructed manner. However, in this case, all of the components
must be of the same type as the constructed BIT STRING.

The following sections describe:
* How an application program sends the type to CMIP services
* How CMIP services sends the type to an application program

BOOLEAN type

BOOLEAN types can have one of two values: true or false.

How an application program sends a BOOLEAN value to CMIP
services

An application program can send a BOOLEAN value to CMIP services in any of
the following forms:

> —TRUE ><
|:ZabeZ:| —true——

—FALSE

—false

(1)
(1)

(2)

—value

—variable

>

—<hex value

Chapter 7. Rules for constructing standard CMIP strings 101

102

Notes:

1 Values and variables specified in this position must resolve to a BOOLEAN
value.

2 When specifying a value in this format, be aware that the BER representation
consists of a single octet, with X'00' representing false, and any other value
representing true.

An application program can specify a BOOLEAN value as shown in the following
examples:

TRUE

FALSE

true
false

How CMIP services sends a BOOLEAN value to an application
program

CMIP services sends one of the following BOOLEAN values:

* TRUE

* FALSE

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
[“Hexadecimal BER format” on page 100 for a description.

INTEGER type

INTEGER types represent integer numbers. An INTEGER value can be either
positive or negative. INTEGER values are expressed as the explicit value of the
integer, which is the actual value of the integer. For example, an application
program can specify 1234 as an INTEGER value. The minimum value is
-2147483648; the maximum value is 2147483648.

How an application program sends an INTEGER value to CMIP
services

An application program can send an INTEGER value to CMIP services in any of
the following forms:

> digits
l—label—| i: + :‘
(1

Y
A

)

—named number
(2)

—value

(2)
—variable
L<hex value>

Notes:

1 The ASN.1 compiler recently introduced support for named numbers, and
this support is expected to be added to the API in the very near future. When
it is, the API will output named integer values by giving the value identifier.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

2 Values and variables specified in this position must resolve to an INTEGER
value.

The following example shows how the ASN.1 syntax might define an INTEGER
value.
X ::= INTEGER
SlowModemSpeed ::= INTEGER {
slowest (300),
sTower (1200),
sTow (2400)
}

A value for X would be:
123

Values for SlowModemSpeed would be:
300
2400

How CMIP services sends an INTEGER value to an application
program

CMIP services sends INTEGER values as strings of decimal digits, possibly
preceded by a minus sign (-). INTEGER values are always represented by their
numeric values.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
{“Hexadecimal BER format” on page 100| for a description. For example, if CMIP
services encounters an INTEGER value longer than four octets, CMIP services
sends the value to the application program in hexadecimal BER format.

ENUMERATED type

The values for ENUMERATED types are expressed as explicit values that are
symbolic, rather than numeric.

How an application program sends an ENUMERATED value to
CMIP services

An ENUMERATED can be formatted and sent to CMIP services in the following
forms:

enumeration
label (1)
value

(1)

variable
<hex value>—

Notes:

1 Values and variables specified in this position must resolve to an
ENUMERATED value.

The following example shows how the ASN.1 syntax might define an
ENUMERATED value.

A\
A

Chapter 7. Rules for constructing standard CMIP strings 103

104

X ::= ENUMERATED {
vall (0),
val2 (1),
val3 (2)

}

Values for X would be:
vall
val3

How CMIP services sends an ENUMERATED value to an
application program

CMIP services sends an ENUMERATED value as a symbolic ASCII string that
corresponds to the value found in the BER.

ENUMERATED values are always represented by the name of the value, not the
corresponding integer value.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
[“Hexadecimal BER format” on page 100 for a description.

REAL type

REAL types represent real values.

How an application program sends a REAL value to CMIP
services

An application program can send a REAL value to CMIP services in any of the
following forms:

»>> mantissa
|—labeZ—| i: + :‘ I—E

—E'—exponen t—l
+

The application program is required to use the hexadecimal BER format for
specifying REAL values.

The following example shows how the ASN.1 syntax might define a REAL value.
X ::= REAL

Values for X would be:
"3.14"
IIO'OII
"-14.33e-05"

How CMIP services sends a REAL value to an application
program

CMIP services sends REAL values to an application program in the following
format:

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

A\
A

»»>—Tabel antissa
E + } |—E—F:|—exponen t—l
- +

CMIP services places labels in the string for all elements of the syntax that are
present.

Under the OS/2° operating system, CMIP services sends REAL values according to
the criteria used for the output of %lg in printf(). CMIP services sends the smallest
number of characters that can be used to represent the number.

If CMIP services cannot decode the value or if CMIP services exists on an
operating system other than OS/2, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
{“Hexadecimal BER format” on page 100 for a description.

BIT STRING type

The BIT STRING type represents a string of bits. There is no limit to the length of
the string.

How an application program sends a BIT STRING to CMIP
services

An application program can send a BIT STRING to CMIP services in any of the
following forms:

|:labeZ:| _’7.—)
(o]
(1)

—value
(1)

—variable

(2)

>

—<hex value

Notes:
1 Variables specified in this position must resolve to a BIT STRING.

2 When specifying a value in this format, remember that the BER
representation of a BIT STRING always begins with an octet that signifies the
number of unused bits in the final octet of the value. Omitting this extra octet
results in decoding errors by the receiver.

The bit strings are sent to CMIP services as part of a character string, using the
characters B'l' and B'0’ to represent on and off. The application program can also
specify a null BIT STRING by entering two quotation marks, either single (") or
double (""). A null BIT STRING has a length of zero.

How an application program specifies a BIT STRING value
The following example shows how the ASN.1 syntax might define a BIT STRING.

Chapter 7. Rules for constructing standard CMIP strings 105

106

for a description.
OCTET STRING type

X ::= BIT STRING {
vall (0),
val2 (1),
val3 (2)

}

Values for X would be:
001 - means val3 is turned on, the others are off
100 - means vall is turned on, the others are off
111 - vall, val2, val3 are all on

How CMIP services sends a BIT STRING to an application
program

CMIP services sends BIT STRINGs as strings of digits, without enclosing them in
quotation marks. When CMIP services receives a null BIT STRING from an
application program, CMIP services sends the null BIT STRING as two double
quotation marks.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value for a BIT STRING, including null BIT
STRINGS, CMIP services sends the value to the application program in
hexadecimal BER format, enclosed in delimiters. See [“Hexadecimal BER format” on|

The OCTET STRING type represents a string of hexadecimal digits.

How an application program sends an OCTET STRING to CMIP
services

An application program can send an OCTET STRING to CMIP services in any of
the following forms:

l—label—l (1)
—string of hexadecimal digits

(2)

v
A

—value

(2)

—variable name
—<hex value

Notes:

1 The formatted string to be sent to CMIP services must have an even number
of hexadecimal digits.

2 Variables specified in this position must resolve to OCTET STRINGs.

An application program can send OCTET STRINGs to CMIP services as strings of
an even number of hexadecimal digits, using the character representation of the
hexadecimal digits '0' through '9' and 'A' through 'F'. Both uppercase and lowercase
letters can be used. When CMIP services returns the OCTET STRING, CMIP
services uses uppercase letters.

Application programs can have OCTET STRINGs that have a length of zero. Such
OCTET STRINGS are null OCTET STRINGSs. For null OCTET STRINGsS, the

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

application program should format the string with two quotation marks with no
intervening characters. The application program can specify either single or double
quotation marks.

An application program can also specify OCTET STRINGs as hexadecimal BER,
although this format is essentially the same as the explicit value format, with
different delimiters.

How an application program specifies an OCTET STRING
The following example shows how the ASN.1 syntax might define an OCTET
STRING.

X ::= OCTET STRING (SIZE(2))

If X has a hexadecimal value of 01AB, the string passed to or from the
API is:
FOF1C1C2

How CMIP services sends an OCTET STRING to an application
program

CMIP services sends an OCTET STRING in explicit value format. CMIP services
sends a null OCTET STRING as two double quotation marks when it sends the
string.

CMIP services places labels in the string for all elements of the syntax that are
present.

NULL type

A NULL type is used for optional input parameters for which the application
program does not specify a value.

How an application program sends a NULL value to CMIP
services

An application program can send a NULL value to CMIP services in any of the
following forms:

A\
A

" Tiwerd ot
label —NULL———
(1)
—value
(1)
—variable
(2)
—<hex value >

Notes:
1 Variables specified in this position must resolve to NULL.

2 When specifying a value in this format, remember that the BER
representation of a NULL consists only of a tag and length field that indicates
tha the length is zero. Therefore, the proper representation of hexadecimal
BER should be “<>".

An application program can specify a NULL value by specifying:
* The character string NULL

* An ASN.1 value label that resolves to a NULL value

* A MIB variable that resolves to a NULL value

Chapter 7. Rules for constructing standard CMIP strings 107

108

How an application program specifies a NULL value
The following example shows how the ASN.1 syntax might define a BIT STRING
value.

X ::= NULL

The value for X is:
NULL

How CMIP services sends a NULL value to an application
program
CMIP services sends a NULL value as the uppercase string NULL.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
[“Hexadecimal BER format” on page 100 for a description.

OBJECT IDENTIFIER type

OBJECT IDENTIFIERs (Ols) serve within OSI management as universally unique
codepoints to represent object classes, specific values, or identities of registered
parts of an object class.

How an application program sends an OBJECT IDENTIFIER to
CMIP services

An application program can send an OBJECT IDENTIFIER to CMIP services in any
of the following forms:

object identifier i >«
label (1)
value

(1)
variable
<hex value>

object identifier:

0——.——component |
ol
2

Notes:
1 Variables specified in this position must resolve to an OBJECT IDENTIFIER.

An application program sends an OBJECT IDENTIFIER to CMIP Services by using
an explicit value. OBJECT IDENTIFIERs are specified as text strings of integers
separated by periods as in 1.3.18.0.0.6. Each of the numbers of the OBJECT
IDENTIFIER must resolve to a long integer. An OBJECT IDENTIFIER must contain
at least two numbers in an OBJECT IDENTIFIER, but there is no maximum
number of components. The first number must be either 0, 1, or 2.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

How an application program specifies an OBJECT IDENTIFIER
value

The following example shows how the ASN.1 syntax might define an OBJECT
IDENTIFIER.

X ::= OBJECT IDENTIFIER

Values for X would be:
1.2.3.4.5.6
1.3.18.0.0.255
2.9.3.2.6.18

How CMIP services sends an OBJECT IDENTIFIER to an
application program
CMIP services sends an OBJECT IDENTIFIER as an explicit value.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
{“Hexadecimal BER format” on page 100 for a description.

Character string types

Different types of character strings can be formatted and sent to the API. Four of
the string types defined in the ASN.1 standard are supported:

* NumericString

* PrintableString

* VisibleString (also known as ISO646String)

* GraphicString

The GraphicString type is the same as the ISO646String type. The application
program can specify character sets other than those supported by VTAM CMIP
services by using the hexadecimal BER format (see [“Hexadecimal BER format” on|

How an application program sends a character string to CMIP
services

An application program can send a character string value to CMIP services in as
normal text strings, according to the following format:

(2) (1)

(1)
»> character string <
l—label—| i:”:‘ i:’:‘
(3)

—value

(3)
—variable
L<hex value

Notes:

1 Quotation marks are especially important when specifying values of character
strings, because character strings are one of the few places where special
characters are valid. Quotation marks are needed if any special characters
such as spaces, parentheses, or commas are included in the value.

Chapter 7. Rules for constructing standard CMIP strings 109

110

2 The characters that can be specified in this string are dictated by the ASN.1
type of the string. See the text for an explicit listing of the allowable
characters.

3 Variables specified in this position must resolve to a hexadecimal or character
string.

An application program can send a character string to CMIP services with or
without quotation marks depending on whether the string contains special
characters.

Valid characters for character strings

The characters that can be specified in the string types are defined in ISO-8824, the
ASN.1 standard.

Valid characters for NumericString type

Table 4. Valid characters for NumericString

Character name Glyph
Digits 0-9
Space

Valid characters for PrintableString type
Table 5. Valid characters for PrintableString

Character name Glyph

Uppercase letters A-Z

Lowercase letters a-zZ

Digits 0-9

Space

Apostrophe

Left parenthesis (

Right parenthesis

Plus sign +

Comma ,

Hyphen -

Full stop

Solidus /

Colon

Equal sign =

Question mark ?

Valid characters for GraphicString and 1SO646String
Table 6. Valid characters for GraphicString and 1ISO646String

Character name Glyph
Uppercase letters A-Z
Lowercase letters a-z
Digits 0-9

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 6. Valid characters for GraphicString and 1ISO646String (continued)

Character name Glyph

Space

Exclamation mark !

Quotation mark

Number sign #
Dollar sign $
Percent sign %
Ampersand &
Apostrophe !
Left parenthesis (
Right parenthesis)
Asterisk *
Plus sign +
Comma ,
Hyphen -
Full stop

Solidus /
Colon

Semicolon ;
Less than sign <

Equals sign

Greater than sign >
Question mark ?
Commercial at @
Left square bracket [
Reverse solidus \
Right square bracket]
Upward arrow head A
Underline _
Grave accent)
Left curly bracket {

Vertical line |

Right curly bracket

|| —

Overline

Composite graphics, which are those constructed with backspaces in a
GraphicString, are not allowed.

If a character that is not valid is entered on encoding, the string is rejected and an

error code is returned to the application program. On decoding, characters that are
not valid are accepted and translated to periods.

Chapter 7. Rules for constructing standard CMIP strings 111

How CMIP services sends a character string to an application
program

When CMIP services sends character strings, if the value contains the double
quotation mark (") character, CMIP services encloses the value in single quotation
marks. If the string does not contain the double quotation mark character, CMIP
services encloses the value in double quotation marks.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
[“Hexadecimal BER format” on page 100| for a description.

Time types

Two time specifications are supported by the API: GeneralizedTime and
UniversalTime.

How an application program sends a TIME value to CMIP
services

An application program can send a TIME value to CMIP services for either type of
time is in the following forms:

label 7-
+HH : MM—

-HH : MM—

YYYY /MM DD-HH: MM: SS «
L. E

<hex value

where the initial fields correspond to the year (4 digits), month, day, hours
(specified using the 24-hour clock), minutes, and seconds. The additional fields are
optional and can be included if the sender chooses. These represent the tenths of a
second (.T), the type of the time (Z indicates GMT, + or - indicates a GMT offset
and nothing indicates local time).

The entire non-hexadecimal value can be enclosed in quotation marks, as can any
other string value, if the sender wishes.

How CMIP services sends a TIME value to an application
program

CMIP services sends a TIME value in the same format that the application
program uses to send a TIME value to CMIP services. See|[“Hexadecimal BER]
format” on page 100| for a description.

Constructed ASN.1 types

112

Constructed types are those that combine similar or different primitive types into
ordered or unordered groups. VTAM CMIP services represents the members of
constructed types by enclosing the members in parentheses. There are four
constructed types. Whether a type can contain members of different types and
whether order is important depends on the constructed type.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Table 7. Order and members of constructed types

Constructed type Members

Order

SET Members can be different types. Order of members is not
important.
SEQUENCE Members can be different types. Order of members is important.
SET OF All members must be the same Order of members is not
type. important.
SEQUENCE OF All members must be the same Order of members is important.
type.

The hexadecimal BER format can also be used for constructed types. When the
hexadecimal BER format is used, either the members of the constructed type can
be specified as BER or the entire contents of the SET or SEQUENCE can be
specified in a single value. For example, given the following ASN.1:

A ::= SEQUENCE
a INTEGER,
b INTEGER,

c INTEGER
}

any of the following values may be specified:

(al, b2, c3)
(a <01>, b <02>, c <03>)
<020101020102020103>

The former value specification is preferred, because CMIP services can check that
the values that are specified are valid and CMIP services can construct the correct
encoding of the tags, lengths, and values.

How CMIP services sends a constructed type to an application
program
CMIP services sends constructed values according to the format used for the
primitives that make up the constructed types. For example, if the SET value is
comprised of INTEGER values, CMIP services sends the values in the same format
that CMIP services sends INTEGER values. Values are enclosed in parentheses and
can have commas between them.

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
[‘Hexadecimal BER format” on page 100| for a description.

For example, if an unrecognized member occurs in a SEQUENCE or a duplicate
member occurs in a SET, the entire contents of the constructed type is returned as
a single hexadecimal string.

SEQUENCE

A SEQUENCE is common in ASN.1. The number and order of members of the
SEQUENCE are dictated by the ASN.1 definition of the SEQUENCE.

Chapter 7. Rules for constructing standard CMIP strings 113

An application program can send a SEQUENCE to CMIP services in any of the
following forms:

’7,
(

v
Label |
L (1)
label

(2)

-value—|

<hex value

Notes:

1 Labels are required only if an optional element of the sequence is omitted and
a subsequent member is included.

2 When specifying a value in this format, the application program is required
to specify the entire contents of the SEQUENCE, including the tags and
lengths of the members, but not the tag and length of the SEQUENCE itself.

Whether a particular member is required to be included depends on whether the
ASN.1 definition indicates that it is optional. It does not depend on CMIP services.

SET

A SET is an unordered collections of members in ASN.1, and CMIP services
implements this definition by allowing the input of members of the set in any
order. Because members can be in any order, CMIP services requires that labels be
specified on all SET members.

An application program can send a SET to CMIP services in the following form,
which is similar to that for a SEQUENCE:

H)

> (=)
|—label—| L |—label—value—|

v
A

(1)

<hex value

Notes:

1 When specifying a value in this format, the application program is required
to specify the entire contents of the SET, including the tags and lengths of the
members, but not the tag and length of the SET itself.

As with a SEQUENCE, whether a particular member is required to be included is
determined by whether the ASN.1 definition indicates that it is optional. It does
not depend on CMIP services. Note that labels are required on members of a SET.

SET OF and SEQUENCE OF types

The SET OF and SEQUENCE OF types represent one or more instances of a SET or
a SEQUENCE. For a description of the differences among constructed types, refer
to [Table 7 on page 113

114 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

An application program can send a SET OF or SEQUENCE OF value to CMIP
services in the following form:

»> (X) ><
label Lm—va l ue—l
label
(1)
<hex value
Notes:

1 When specifying a value in this format, the application program is required
to specify the entire contents of the SET OF or SEQUENCE OF, including the
tags and lengths of the members, but not the tag and length of the SET OF or
SEQUENCE OF itself.

There is no limitation (other than subtyping specified in the ASN.1) as to the
number of members that can be specified in the SET OF or SEQUENCE OF. It is
valid to specify a SET OF or SEQUENCE OF with no members, so long as subtype
constraints are obeyed.

Decision types

Three ASN.1 types allow the application program to include different pieces of
information, even after the ASN.1 definition is complete. They allow the
application program to determine, at execution time, what information should fall
within certain fields. VTAM CMIP services calls these types decision types, and they
include CHOICE, ANY and ANY DEFINED BY.

Note that the hexadecimal BER format is not supported for CHOICE and ANY
DEFINED BY types. If the application program needs to specify the latter as BER,
the entire SEQUENCE that contains the ANY DEFINED BY must be specified as a
single BER value.

CHOICE types

A CHOICE type is one in which a decision must be made concerning the next type
to include in a string. When receiving incoming strings to be decoded, the
determination of which CHOICE to take is based on the tagging in the transfer
syntax. In CMIP services, the choice is based on the resolution label presented in the
string when the CHOICE is encountered. The resolution label is the identifier of
each of the NamedTypes in the CHOICE construct.

How an application program sends a CHOICE to CMIP services
An application program can send a CHOICE to CMIP services in any of the
following forms:

»—L—_l—(—resolution label—value—)
label

A\
A

Note: The resolution label is always required.

How an application program specifies CHOICE values
The following example shows how the ASN.1 syntax might define a CHOICE.

Chapter 7. Rules for constructing standard CMIP strings 115

116

A ::= CHOICE

{
x INTEGER,
y OBJECT IDENTIFIER,
z OCTET STRING

}

The application program can choose to have field b be an INTEGER, an OBJECT
IDENTIFIER, or an OCTET STRING. If the application program chooses for it to be
an INTEGER, the following string should be specified:

b (x 1234)

where the x is the resolution label.

How CMIP services sends a CHOICE to an application program
So long as the alternative described in the BER exists within the CHOICE, CMIP
services sends the CHOICE in the same format an application program uses to
send a CHOICE to CMIP services. (An alternative is one of the options specified in
the CHOICE syntax.)

CMIP services places labels in the string for all elements of the syntax that are
present.

If CMIP services cannot decode the value, CMIP services sends the value to the
application program in hexadecimal BER format, enclosed in delimiters. See
[“Hexadecimal BER format” on page 100 for a description. For example, if CMIP
services does not recognize the alternative, CMIP services sends a CHOICE as
hexadecimal BER.

ANY DEFINED BY types

How an application program sends an ANY DEFINED BY value to
CMIP services

An application program can send an ANY DEFINED BY value to CMIP services
according to the method used to send the type to which the ANY DEFINED BY
resolves. The label of the input corresponds to the label of the ANY DEFINED BY
construct in the ASN.1, and the value corresponds to the value of the type to
which the ANY DEFINED BY resolves. The resolution field determines which type
to translate.

How an application program specifies ANY DEFINED BY values
The following example shows how the ASN.1 syntax might define an ANY
DEFINED BY value.

A ::= INTEGER
B ::= BIT STRING
C ::= BOOLEAN
X ::= SEQUENCE
a INTEGER,

b ANY DEFINED BY a --% ANY_TABLE_REF (Y)
}
--% Y ANY_TABLE ::=

{

1
2
3

1
1
O W=

1
N o ol\° SN

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Given this ASN.1, if one wanted to have member b of type X be a bit string, field a
must have a value of 2 (as defined by the ANY DEFINED BY resolution table Y).
Therefore, an application program formats and sends to CMIP services the
following:

(@2, b111011011)

LA BIT STRING — because the type must be B : : = BIT STRING
The label for the second element of the SEQUENCE X
The value of the first element of SEQUENCE X

Because this is 2, the type of the second element of x
must be B (from ANY TABLE Y) which is a BIT STRING

The label for the first element of the SEQUENCE X

Figure 4. Defining a bit string field

ANY types

The ANY type in ASN.1 carries no tagging information and can resolve to any
other ASN.1 type. Because an unknown set of different types can be used to
resolve an ANY, the API must be told about the tag to be used.

How an application program sends an ANY value to CMIP
services

An application program can send an ANY value to CMIP services in the following
form:

(1)
»—L—_|—<hex value <
label

Notes:

1 The hexadecimal value specified in this position must include the tag and
length fields of the BER. Note that this is different from the hexadecimal
values specified for other types.

The only valid format for an application program to use for an ANY value is
hexadecimal BER.

How CMIP services sends an ANY value to an application
program

CMIP services sends an ANY value in hexadecimal BER format. It is important to
note that the hexadecimal value for an ANY value includes the tag and length
portions of the BER, in contrast to the hexadecimal BER formats of the other types.

CMIP services places labels in the string for all elements of the syntax that are
present.

Additional examples of how application programs send data

The following examples demonstrate how an application program can send
primitive types and the more complex ASN.1 data types.

The first examples are based on the following ASN.1 module:

Abc DEFINITIONS IMPLICIT TAGS ::= BEGIN
A ::= BOOLEAN
B ::

INTEGER

Chapter 7. Rules for constructing standard CMIP strings 117

ENUMERATED {a(0), b(2), c(5), d(10)}
REAL

BIT STRING

OCTET STRING

NULL

OBJECT IDENTIFIER

o mMMmooO

TRUE

12

10

B'10010"

H'1234567890'

NULL

{ iso icd(3) 18 0 0 6 }

SKQ - O T @
o mmoO W >

END

The following are all valid input strings:

Module Type String
Abc A TRUE
Abc A false
Abc A a
Abc B -12345
Abc B 0
Abc B 500000
Abc B b
Abc C b
Abc C c
Abc D 3.125
Abc D -12E25
Abc E 11011011010
Abc E "
Abc E e
Abc F 1234567890123456
Abc F f
Abc F "
Abc G NULL
Abc G g
Abc H 1.3.18.0.3
Abc H 0.0
Abc H 1.2.5.355465.2.1
Abc H h

The second set of examples show how to specify some constructed data types. This
set of examples is based on the following ASN.1 module:

Xyz DEFINITIONS IMPLICIT TAGS ::= BEGIN
X ::= SEQUENCE

a INTEGER,
b BOOLEAN OPTIONAL,

118 2z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

c INTEGER,
d BIT STRING
}

Y ::= SET OF INTEGER
Z ::= SEQUENCE
{
a X,
by

END

The following are all valid strings that the application program can send to CMIP
services.

Module Type String
Xyz X (a 12, b TRUE, ¢ 56000, d 1101101)
Xyz X (a 12, ¢ 56000, d “1101101")
Xyz X (12, FALSE, 0, "")
Xyz Y (1,2,3,4,5,6,7, 8)
Xyz Y (1,2,3,4,5,6)
Xyz Y 0
Xyz z (a (a 12, b TRUE, ¢ 56000, d 1101101), b (1,2,3,4))
Xyz V4 (a (a 12, ¢ 56000, d 1101101), b ())
Xyz z ((a 12, ¢ 56000, d 1101101), ()

Chapter 7. Rules for constructing standard CMIP strings 119

120 2z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 8. Examples of standard CMIP strings

This section contains examples of the CMIP strings that are sent between
application programs and CMIP services.

The requests and responses are sent from the application program to CMIP
services using the MIBSendCmipRequest and MIBSendCmipResponse functions.
For a description of these functions, refer to pages|“MIBSendCmipRequest—CMI
request function” on Fage 70| and |”MIBSendeipResponse—CMIP responsel
function” on page 73.| The indications and confirmations are received by the

application program using the read queue exit routine or the dataspace dequeue
routine.

The following example shows the call that an application program makes to the
MIBSendCmipRequest to send a CMIP request. The values for the variables
OperationValue and Argument will be determined by the type of request being
sent. Examples on the following pages will show specific examples for the values
of these variables.

int LinkId;

int rc;

void xLocalld;

unsigned int Invokeld;

unsigned int OperationValue;

char Argument[4096] ;

rc = MIBSendCmipRequest(LinkId,
OperationValue, /* 3 for GET, 7 for Action,

8 for CREATE, etc. */
Argument,
Localld,
NULL, /* don't override source object
specified by Localld */
DS_NOT_PROVIDED, /* don't override dest */
NULL,

&Invokeld);

The following example shows the call that an application program makes to the
MIBSendCmipResponse to send a CMIP response. The values for the variables
OperationValue and Argument will be determined by the type of response being
sent. Examples on the following pages will show specific examples for the values
of these variables.

char *AssocHandleFromRequest;

int LinkId;

int rc;

void xLocalld;

unsigned int Invokeld, InvokeIdFromRequest;

unsigned int OperationValue;

char Argument[4096] ;

rc = MIBSendCmipResponse(LinkId,

InvokeIdFromRequest,

1, /* last-in-chain indicator */

1, /* successful */

OperationValue, /* 3 for GET, 7 for Action,
8 for CREATE, etc. */

Argument,

Localld,

© Copyright IBM Corp. 1995, 2008 121

NULL, /% don't override source object
specified by Localld */

AssocHandleFromRequest,

&Invokeld);

Requests and indications

122

The following descriptions are for CMIP requests and indications. A request is the
message sent by a manager application program to an agent application program
via the MIBSendCmipRequest function.

An indication is the message received by the agent application program
corresponding to the request.

For each request, the following information is included:
* ASN.1 syntax

* Example request string

* Corresponding indication

GET request—syntax

GetArgument ::= SEQUENCE
{

baseManagedObjectClass ObjectClass,

baseManagedObjectInstance ObjectInstance,

accessControl [5] AccessControl OPTIONAL,

synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort,
scope [7] Scope DEFAULT base-and : baseObject,
filter CMISFilter DEFAULT and : {},
attributelIdList [12] IMPLICIT SET OF AttributeId OPTIONAL

}

GET request—example request string

The operation-value for GET is 3, so the value of the OperationValue variable will
be 3 as well.

Here is an example value of the Argument variable:

(baseManagedObjectClass 2.9.3.2.3.13,baseManagedObjectInstan
ce (distinguishedName "1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name
SSCP1A)"))

This will retrieve the values of all attributes of the system object on host
NETA.SSCP1A.

GET request—corresponding indication

Here is an example GET indication corresponding to the previous GET request
example, as received by the application. This shows the APIhdr at the beginning of
the message.

00000100 0003000A 00000001 00000001 £ *
2FAA4356 00000000 00000000 01120020 K iiie e, *
A2998360 A3A89785 40F16B40 A2998340 xsrc-type 1, src *
81F16B40 94A28740 C3D4C9D7 60F14BD5 *al, msg CMIP-1.N*
96A38986 898381A3 89969540 4D8995A5 xotification (invx
969285C9 C440F1F9 F6F6F1F8 6B409697 xokeID 196618, op*
859981A3 89969560 A58193A4 8540F06B xeration-value 0,*
40819987 A4948595 A3404D94 81958187 * argument (manag*
8584D682 918583A3 (39381A2 A240F14B xedObjectClass 1.*
F34BF1F8 4BFO4BFO 4BF2F2F6 F76B4094 *3.18.0.0.2267, m=*
81958187 8584D682 918583A3 C995A2A3 *anagedObjectInst=

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

81958385 404D8489 A2A38995 87A489A2 *ance (distinguisx*
888584D5 81948540 7DF14BF3 4BF1F84B xhedName '1.3.18.*
FO4BF24B F44BF67E D5C5E3C1 5EF14BF3 *0.2.4.6=NETA;1.3*
4BF1F84B FO4BFO4B F2FOF3F2 7EE2E2C3 *.18.0.0.2032=SSC~
D7F1C15E F14BF34B F1F84BFO 4BF0O4BF2 *P1A;1.3.18.0.0.2*
F2F7F27E E2E6CIE3 C3C8C5C4 4BE2E6DS5 *272=SWITCHED. SWN~
C4F3C1C2 F77D5D6B 4085A585 95A3E3A8 *D3AB7'), eventTyx*
978540F2 4BF94BF3 4BF24BF1 FO4BF65D *pe 2.9.3.2.10.6)*
5D00 *). *

ACTION request—syntax

ActionArgument ::= SEQUENCE {

baseManagedObjectClass ObjectClass,
baseManagedObjectInstance ObjectInstance,

accessControl [5] AccessControl OPTIONAL,
synchronization [6] IMPLICIT CMISSync DEFAULT bestEffort,
scope [7] Scope OPTIONAL,

filter CMISFilter DEFAULT and : {},
actionInfo [12] IMPLICIT ActionInfo

}

ACTION request—example request string

The operation-value for ACTION is 7, so the value of the OperationValue variable
will be 7 as well.

Here is an example value of the Argument variable:

(baseManagedObjectClass 1.3.18.0.0.2151,baseManagedObjectIns
tance (distinguishedName "1.3.18.0.2.4.6=NETA;1.3.18.0.0.203
2=SSCP1A;1.3.18.0.0.2216=(string SnaNetwork)"),actionInfo (a
ctionType 1.3.18.0.0.2222, actionInfoArg (start oneTimeOnly)

))

ACTION request—corresponding indication

Here is an example ACTION indication corresponding to the previous ACTION
request example, as received by the application. This shows the APIhdr at the
beginning of the message.

00000100 00030012 L. *
00000002 00000001 2FAA536E 00000000 Lo >k
00000000 0120FAO8 A2998360 A3A89785 ivieanns src-typex

40F16B40 A2998340 81F16B40 94A28740 * 1, src al, msg *
C3D4C9D7 60F14BD9 D6CIES81 9784A440 *CMIP-1.ROIVapdu *
4D8995A5 969285C9 C440F1F9 F6F6F2F6 *(invokeID 196626+
6B409697 859981A3 89969560 A58193A4 *, operation-valu*
8540F76B 40819987 A4948595 A3404D82 *e 7, argument (b
81A285D4 81958187 8584D682 918583A3 *aseManagedObject=
C39381A2 A240F14B F34BF1F8 4BFO4BFO *Class 1.3.18.0.0*
4BF2F1F5 F16B4082 81A285D4 81958187 *,2151, baseManag*
8584D682 918583A3 C995A2A3 81958385 xedObjectInstance*
404D8489 A2A38995 87A489A2 888584D5 * (distinguishedN*
81948540 4DD98593 81A389A5 85C489A2 *ame (RelativeDisx*
A3899587 A489A288 8584D581 9485404D *tinguishedName (»*
C1A3A399 8982A4A3 85E58193 A485C1A2 *AttributeValueAs*
A28599A3 89969540 4D81A3A3 998982A4 xsertion (attribux*
A385E3A8 978540F1 4BF34BF1 F84BF04B *teType 1.3.18.0.*
F24BF44B F66B4081 A3A39989 82A4A385 *2.4.6, attributex
E58193A4 85407FD5 C5E3C17F 5D5D6B40 *Value "NETA")), =
D9859381 A389A585 C489A2A3 899587A4 *RelativeDistingu*
89A28885 84D58194 85404DC1 A3A39989 xishedName (Attrix*
82A4A385 E58193A4 85C1A2A2 8599A389 *buteValueAssertix
9695404D 81A3A399 8982A4A3 85E3A897 *on (attributeTyp=
8540F14B F34BF1F8 4BFO4BFO 4BF2FOF3 *e 1.3.18.0.0.203*
F26B4081 A3A39989 82A4A385 E58193A4 *2, attributeValux

Chapter 8. Examples of standard CMIP strings 123

85407FE2 E2C3D7F1 C17F5D5D 6B40D985 xe "SSCP1A")), Rex
9381A389 A585C489 A2A38995 87A489A2 *TativeDistinguis*
888584D5 81948540 4DC1A3A3 998982A4 xhedName (Attribux
A385E581 93A485C1 A2A28599 A3899695 *teValueAssertion=
404D81A3 A3998982 A4A385E3 A8978540 * (attributeType =*
F14BF34B F1F84BFO 4BFO4BF2 F2F1F66B %*1.3.18.0.0.2216,*
4081A3A3 998982A4 A385E581 93A48540 * attributeValue =*
4DA2A399 89958740 7FE29581 D585A3A6 *(string "SnaNetwx
9699927F 5D5D5D5D 5D6B4081 83A38996 *xork"))))), actiox
95C99586 96404D81 83A38996 95E3A897 *nInfo (actionTypx
8540F14B F34BF1F8 4BFO4BFO 4BF2F2F2 *e 1.3.18.0.0.222%*
F26B4081 83A38996 95C99586 96C19987 *2, actionInfoArg*
404DA2A3 8199A340 969585E3 899485D6 * (start oneTimeOx
9593A85D 5D5D5D00 *nly)))). *

Responses and confirmations

The following descriptions are for CMIP responses and confirmations. A response
is the message sent by an agent application program to a manager application
program via the MIBSendCmipResponse function.

A confirmation is the message received by the manager application program which
corresponds to the response.

For each response or confirmation, the following information is included:
e ASN.1 syntax

* Example response string

¢ Corresponding confirmation

GET response—syntax

GetResult::=
SEQUENCE { managedObjectClass ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
attributelList [6] IMPLICIT SET OF Attribute OPTIONAL
1

GET response—example response string

The operation-value for GET is 3, so the value of the OperationValue variable will
be 3 as well.

Here is an example value of the Argument variable:

(managedObjectClass &0C, (distinguishedName &DN),attri
buteList ((attributeld 2.9.3.2.7.5, (distinguishedNam
e (((attributeType 1.3.18.0.2.4.6,attributeValue
NETA), (attributeType 2.9.3.2.7.4,attributeValue
(name "SSCP1A")))))), (attributeld 2.9.3.2.7.35, enab
Ted)))

GET response—corresponding confirmation

Here is an example GET confirmation corresponding to the previous GET response
example, as received by the application. This shows the APIhdr at the beginning of
the message.

00000000 00030008 i *
00000003 00000001 2FB39434 00000000 K Meo... *
00000000 00000001 A2998360 A3A89785 LN src-typex

40F16B40 A2998340 81F16B40 94A28740 * 1, src al, msg *
C3D4C9D7 60F14BD9 D6DIE281 9784A440 *CMIP-1.RORSapdu =
4D8995A5 969285C9 C440F1F9 F6F6F1F6 *(invokeID 196616%*

124 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

6B409985 A2A493A3 D697A389 9695404D *, resultOption (*
96978599 81A38996 9560A581 93A48540 *xoperation-value *
F36B4099 85A2A493 A3404D94 81958187 *3, result (manag*
8584D682 918583A3 C39381A2 A240F24B xedObjectClass 2.*
F94BF34B F24BF34B F1F36B40 94819581 *9,3.2.3.13, mana*
878584D6 82918583 A3C995A2 A3819583 xgedObjectInstanc*
85404D84 89A2A389 9587A489 A2888584 *e (distinguishedx
D5819485 404DD985 9381A389 A585C489 *Name (RelativeDi*
A2A38995 87A489A2 888584D5 81948540 *stinguishedName =
4DC1A3A3 998982A4 A385E581 93A485C1 *(AttributeValueAx
A2A28599 A3899695 404D81A3 A3998982 xssertion (attrib*
A4A385E3 A8978540 F14BF34B F1F84BFO xuteType 1.3.18.0*
4BF24BF4 4BF66B40 81A3A399 8982A4A3 *,2.4.6, attribut=
85E58193 A485407F D5C5E3C1 7F5D5D6B xeValue "NETA")),~*
40D98593 81A389A5 85C489A2 A3899587 * RelativeDisting*
A489A288 8584D581 9485404D C1A3A399 *uishedName (Attr*
8982A4A3 85E58193 A485C1A2 A28599A3 xibuteValueAssert*
89969540 4D81A3A3 998982A4 A385E3A8 xion (attributeTy*
978540F2 4BF94BF3 4BF24BF7 4BF46B40 *pe 2.9.3.2.7.4, *
81A3A399 8982A4A3 85E58193 A485404D *attributeValue (*
95819485 407FE2E2 C3D7F1C1 7F5D5D5D *name "SSCP1A")))~
5D5D6B40 81A3A399 8982A4A3 85D389A2 x)), attributeLis*
A3404DC1 A3A39989 82A4A385 404D81A3 *xt (Attribute (at*
A3998982 A4A385C9 8440F24B F94BF34B *tributeld 2.9.3.*
F24BF74B F56B4081 A3A39989 82A4A385 *2.7.5, attributex
E58193A4 85404D84 89A2A389 9587A489 *Value (distinguix
A2888584 D5819485 404DD985 9381A389 xshedName (Relati*
A585C489 A2A38995 87A489A2 888584D5 *xveDistinguishedN=
81948540 4DC1A3A3 998982A4 A385E581 xame (AttributeVax
93A485C1 A2A28599 A3899695 404D81A3 *TueAssertion (at*
A3998982 A4A385E3 A8978540 F14BF34B *tributeType 1.3.*
F1F84BFO 4BF24BF4 4BF66B40 81A3A399 *18.0.2.4.6, attr=
8982A4A3 85E58193 A485407F D5C5E3CL *ibuteValue "NETA*
7F5D6B40 C1A3A399 8982A4A3 85E58193 *"), Attributevalx
A485C1A2 A28599A3 89969540 4D81A3A3 xueAssertion (attx
998982A4 A385E3A8 978540F2 4BF94BF3 *ributeType 2.9.3*
4BF24BF7 4BF46B40 81A3A399 8982A4A3 *,2.7.4, attribut«
85E58193 A485404D 95819485 407FE2E2 xeValue (name "SS*
C3D7F1C1 7F5D5D5D 5D5D5D6B 40C1A3A3 *CP1A")))))), Att*
998982A4 A385404D 81A3A399 8982A4A3 xribute (attributx
85C98440 F24BF94B F34BF24B F74BF3F5 *xeld 2.9.3.2.7.35%
6B4081A3 A3998982 A4A385E5 8193A485 *, attributeValuex
40859581 82938584 5D5D5D5D 5D00 * enabled))))). =

CREATE response—syntax

CreateResult::=
SEQUENCE { managedObjectClass ObjectClass OPTIONAL,
managedObjectInstance ObjectInstance OPTIONAL,
currentTime [5] IMPLICIT GeneralizedTime OPTIONAL,
attributeList [6] IMPLICIT SET OF Attribute OPTIONAL
}

CREATE response—example response string

The operation-value for CREATE is 8, so the value of the OperationValue variable
will be 8 as well.

Here is an example value of the Argument variable:

(managedObjectClass 1.3.18.0.0.2054, (distinguis
hedName '1.3.18.0.2.4.6=NETA;2.9.3.2.7.4=(name "
SSCP1A");2.9.3.2.7.1=(string "EFDOOOO1")'), attr
ibuteList ((2.9.3.2.7.65, 1.3.18.0.0.2),(2.9.3.2
.7.1, (string "EFD0O0001")),(2.9.3.2.7.66, (2.9.3
.2.4.17,2.9.3.2.4.22,1.3.18.0.0.2063)),(2.9.3.2.
7.50, (2.9.3.2.3.4)),(2.9.3.2.7.31, unlocked), (2

Chapter 8. Examples of standard CMIP strings 125

.9.3.2.7.35, enabled),(1.3.18.0.0.2775, ()),(2.9
.3.2.7.33, ()),(2.9.3.2.7.56, (item (equality (at
tributeld 2.9.3.2.7.14, attributeValue 2.9.3.2.1
0.7)))),(2.9.3.2.7.55,(single (name (RDNSequence
(RelativeDistinguishedName (AttributeValueAsser
tion (attributeType 1.3.18.0.2.4.6, attributeVal
ue "NETA")), RelativeDistinguishedName (Attribut
eValueAssertion (attributeType 2.9.3.2.7.4, attr
ibuteValue (name "SSCP1A"))), RelativeDistinguis
hedName (AttributeValueAssertion (attributeType
1.3.18.0.2.4.12, attributeValue "aplposec"))))))
),(2.9.3.2.7.63,2.9.3.2.6.1)))

CREATE response—corresponding confirmation

Here is an example CREATE confirmation corresponding to the previous CREATE
response example, as received by the application. This shows the APIhdr at the
beginning of the message.

00000000 OOO3000A e *
00000003 00000001 2FB398C6 00000000 L qF....*
00000000 00000004 A2998360 A3A89785 N src-typex

40F16B40 A2998340 81F16B40 94A28740 * 1, src al, msg =*
C3D4C9D7 60F14BD9 D6D9E281 9784A440 *CMIP-1.RORSapdu *
4D8995A5 969285C9 C440F1F9 F6F6F1F8 *(invokeID 196618*
6B409985 A2A493A3 D697A389 9695404D *, resultOption (*
96978599 81A38996 9560A581 93A48540 xoperation-value *
F86B4099 85A2A493 A3404D94 81958187 %8, result (manag*
8584D682 918583A3 C39381A2 A240F14B *xedObjectClass 1.*
F34BF1F8 4BFO4BFO 4BF2FOF5 F46B4094 %*3.18.0.0.2054, m*
81958187 8584D682 918583A3 C995A2A3 *anagedObjectInst*
81958385 404D8489 A2A38995 87A489A2 xance (distinguis*
888584D5 81948540 4DD98593 81A389A5 xhedName (Relativ*
85C489A2 A3899587 A489A288 8584D581 *xeDistinguishedNax
9485404D C1A3A399 8982A4A3 85E58193 xme (AttributeValx
A485C1A2 A28599A3 89969540 4D81A3A3 xueAssertion (attx
998982A4 A385E3A8 978540F1 4BF34BF1 *ributeType 1.3.1*
F84BFO4B F24BF44B F66B4081 A3A39989 *8.0.2.4.6, attrix
82A4A385 E58193A4 85407FD5 C5E3C17F xbuteValue "NETA"x
5D5D6B40 D9859381 A389A585 C489A2A3 %)), RelativeDist*
899587A4 89A28885 84D58194 85404DC1 xinguishedName (Ax
A3A39989 82A4A385 E58193A4 85C1A2A2 *ttributeValueAss*
8599A389 9695404D 81A3A399 8982A4A3 xertion (attribut*
85E3A897 8540F24B F94BF34B F24BF74B *xeType 2.9.3.2.7.*
F46B4081 A3A39989 82A4A385 E58193A4 *4, attributeValux
85404D95 81948540 7FE2E2C3 D7F1C17F *xe (name "SSCPIA"x
5D5D5D6B 40D98593 81A389A5 85C489A2 x))), RelativeDis*
A3899587 A489A288 8584D581 9485404D xtinguishedName (*
C1A3A399 8982A4A3 85E58193 A485C1A2 *AttributeValueAs*
A28599A3 89969540 4D81A3A3 998982A4 xsertion (attribux
A385E3A8 978540F2 4BF94BF3 4BF24BF7 *teType 2.9.3.2.7+
4BF16B40 81A3A399 8982A4A3 85E58193 *x,1, attributeVal*
A485404D A2A39989 9587407F C5C6CAFO xue (string "EFDO*
FOFOFOF1 7F5D5D5D 5D5D6B40 81A3A399 *0001"))))), attr*
8982A4A3 85D389A2 A3404DC1 A3A39989 xibuteList (Attrix
82A4A385 404D81A3 A3998982 A4A385C9 xbute (attributelx
8440F24B F94BF34B F24BF74B F6F56B40 *d 2.9.3.2.7.65, *
81A3A399 8982A4A3 85E58193 A48540F1 *xattributeValue 1*
4BF34BF1 F84BF04B FO4BF25D 6B40C1A3 %x.3.18.0.0.2), Atx
A3998982 A4A38540 4D81A3A3 998982A4 *xtribute (attribux
A385(C984 40F24BF9 4BF34BF2 4BF74BF1 *teld 2.9.3.2.7.1%
6B4081A3 A3998982 A4A385E5 8193A485 *, attributeValuex
404DA2A3 99899587 407FC5C6 CAFOFOFO * (string "EFDO0O*
FOF17F5D 5D6B40C1 A3A39989 82A4A385 *01")), Attributex
404D81A3 A3998982 A4A385C9 8440F24B * (attributeld 2.*
FO4BF34B F24BF74B F6F66B40 81A3A399 %x9.3.2.7.66, attrx
8982A4A3 85E58193 A485404D D6C2D1C5 xibuteValue (OBJEx

126 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

C3E360CY
F94BF348B
C3E360C9
F94BF348B
C3E360C9
F34BF1F8
40C1A3A3
8982A4A3
F74BF5F0
8193A485
A240F24B
40C1A3A3
8982A4A3
F74BF3F1
8193A485
C1A3A399
82A4A385
4BF3F56B
93A48540
A3998982
A385C984
F2F7F7F5
8193A485
A4A38540
40F24BF9
A3A39989
5D6B40C1
A3998982
F24BF74B
85E58193
A4819389
85C98440
6B4081A3
40F24BF9
5D6B40C1
A3998982
F24BF74B
85E58193
95819485
85404DD9
9587A489
A3998982
99A38996
E3A89785
F44BF66B
93A48540
9381A389
888584D5
A385E581
404D81A3
F24BF94B
998982A4
85407FE2
859381A3
A2888584
A4A385E5
95404D81
40F14BF3
6B4081A3
407F8197
5D5D6B40
A3A39989
4BF24BF7
A385E581
F64BF15D

C4C5D5E3
F24BF44B
C4C5D5E3
F24BF44B
C4C5D5E3
4BFO4BFO
998982A4
8598440
6B4081A3
404DD682
F94BF34B
998982A4
85C98440
6B4081A3
40A49593
8982A4A3
C98440F2
4081A3A3
85958182
A4A38540
40F14BF3
6B4081A3
404D5D5D
4D81A3A3
4BF34BF2
82A4A385
A3A39989
A4A385C9
F5F66B40
A485404D
A3A8404D
F24BF94B
A3998982
4ABF34BF2
A3A39989
A4A385C9
F5F56B40
A485404D
404DD9C4
859381A3
A2888584
A4A385E5
95404D81
40F14BF3
4081A3A3
7FD5C5E3
A585C489
81948540
93A485C1
A3998982
F34BF24B
A385E581
E2C3D7F1
89A585(C4
D5819485
8193A485
A3A39989
4BF1F84B
A3998982
939796A2
C1A3A399
82A4A385
4BF6F36B
93A48540
5D5D5D5D

€9C6CIaC5
F1F76B40
€9C6CIaC5
F2F26B40
€9C6CIaC5
4BF2FOF6
A385404D
F24BF94B
A3998982
918583A3
F24BF34B
A385404D
F24BF94B
A3998982
96839285
85404D81
4BF94BF3
998982A4
9385845D
4D81A3A3
4BF1F84B
A3998982
6B40C1A3
998982A4
4BF74BF3
E58193A4
82A4A385
8440F248B
81A3A399
89A38594
81A3A399
F34BF24B
A4A385E5
4BF1F04B
82A4A385
8440F24B
81A3A399
A2899587
D5E28598
89A585C4
D5819485
8193A485
A3A39989
4BF1F84B
998982A4
C17F5D5D
A2A38995
4DC1A3A3
A2A28599
A4A385E3
F74BF468B
93A48540
C17F5D5D
89A2A389
404DC1A3
C1A2A285
82A4A385
FO4BF24B
A4A385E5
85837F5D
8982A4A3
C98440F2
4081A3A3
F24BF94B
00

D940F24B
D6C2D1C5
D940F24B
D6C2D1C5
D940F14B
F35D5D6B
81A3A399
F34BF24B
A4A385E5
C39381A2
F45D5D68B
81A3A399
F34BF24B
A4A385E5
845D6B40
A3A39989
4BF24BF7
A385E581
6B40C1A3
998982A4
FO4BF0O4B
A4A385E5
A3998982
A385C984
F36B4081
85404D5D
404D81A3
F94BF34B
8982A4A3
404D8598
8982A4A3
F74BF1F4
8193A485
F75D5D5D
404D81A3
F94BF34B
8982A4A3
9385404D
A4859583
89A2A389
404DCIA3
C1A2A285
82A4A385
FO4BF24B
A385E581
6B40D985
87A489A2
998982A4
A3899695
A8978540
4081A3A3
4D958194
5D6B40D9
9587A489
A3998982
99A38996
E3A89785
F44BF1F2
8193A485
5D5D5D5D
85404D81
4BF94BF3
998982A4
F34BF24B

CT-IDENTIFIER 2.
9.3.2.4.17, OBJE
CT-IDENTIFIER 2.
9.3.2.4.22, OBJE
CT-IDENTIFIER 1.
%3.18.0.0.2063)),*
* Attribute (attrx
ibuteld 2.9.3.2.
7.50, attributeV
alue (ObjectClas
s 2.9.3.2.3.4)),
* Attribute (attrx
xibuteld 2.9.3.2.%
7.31, attributeV
*alue unlocked), *
Attribute (attri
buteld 2.9.3.2.7
,35, attributeVax
Tue enabled), At
*tribute (attribux
teld 1.3.18.0.0.
2775, attributeV
*alue ()), Attribx
xute (attributeld*
* 2.9.3.2.7.33, a*
ttributeValue ()
x), Attribute (at*
tributeld 2.9.3.
2.7.56, attribut
xeValue (item (eq*
xuality (attribut*
xeld 2.9.3.2.7.14%
*, attributeValuex
* 2.9.3.2.10.7)))*
x), Attribute (at*
tributeld 2.9.3.
2.7.55, attribut
xeValue (single (*
name (RDNSequenc
xe (RelativeDisti*
nguishedName (At
tributeValueAssex
*rtion (attributex
Type 1.3.18.0.2.
4.6, attributeVax
*Tue "NETA")), Rex
lativeDistinguis
xhedName (Attribux
teValueAssertion
* (attributeType =*
%2.9.3.2.7.4, att*
ributeValue (nam
xe "SSCP1A"))), R
xelativeDistinguix*
xshedName (Attrib*
xuteValueAssertio
n (attributeTypex
* 1.3.18.0.2.4.12%
, attributeValuex
* "aplposec")))))=
x)), Attribute (a*
ttributeld 2.9.3
,2.7.63, attribux
teValue 2.9.3.2.
%6.1))))). *

Chapter 8. Examples of standard CMIP strings

127

128 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 9. Create and delete requests

This chapter describes how an application program uses CMIP services to remotely
create and delete objects on agent systems.

Objects are not directly created or deleted by CMIP services in response to CMIP
m-Create and m-Delete requests. When a manager application program sends a
create or delete request to an agent system, these requests are processed by CMIP
agent application programs.

Create requests

CMIP services requires that the create request provide the distinguished name of
the object being created.

For an object to be created by CMIP services, the name binding to be used for the
object must explicitly specify that the create operation is supported. If the name
binding does not explicitly specify that the create operation is supported, the create
request is rejected.

Because objects are not directly created by CMIP services, an application program
must exist that is capable of processing the create request.

CMIP services looks for an application program to handle the create request; this
application program is called a create handler.

 If CMIP services finds a create handler, CMIP services sends the create request to
the create handler.

* If CMIP services cannot find a create handler, CMIP services rejects the create
request with a noSuchObjectClass error.

When the create handler receives the create request, it does one of the following:
* Creates the new object requested on the create request

* Rejects the create request for the new object

* Creates an object different from the object requested on the create request

Creating the new object requested on the create request

To create a new object that is to be registered on the same connection as the create
handler, the create handler registers the new object with the MIBSendRegister
function using the same distinguished name and object class that were specified on
the create request.

After the create handler registers the new object, the create handler acknowledges
the create request. The create handler uses the MIBSendCmipResponse function to
return the response to the sender of the create request.

Rejecting the create request

If the create handler decides to reject the create request, the create handler uses the
MIBSendDeleteRegistration function with no local identifier and the object name
provided with the create request to remove the pending registration for object that
was requested to be created.

© Copyright IBM Corp. 1995, 2008 129

Then the create handler uses the MIBSendCmipResponse function to return an
error response to the sender of of the create request. The error describes to the
manager application program why the create request was rejected.

Creating an object different from object on the create request

If the create handler decides to create an object different from the one that was
requested to be created, the create handler uses the MIBSendDeleteRegistration
function with no local identifier and the object name provided with the create
request to remove the pending registration for object that was requested to be
created. Then the create handler registers the other object with the
MIBSendRegister function.

After the create handler registers the new object, the create handler acknowledges
the create request. The create handler uses the MIBSendCmipResponse function to
return the response to the sender of the create request.

Delete requests

Because objects are not directly deleted by CMIP services, all application programs
must be able to handle delete requests.

For registered objects, the application program sends the delete request to the
application program that registered the object. For objects that are not registered,
the application program sends the delete request to the subtree manager of the
object. The create handler is not involved in the processing of the delete request.

When an application program receives the delete request, it either deletes the
object or rejects the delete request. These two situations are described here for
non-scoped delete requests.

Deleting the object requested on the delete request

In this situation, a manager application program requests that an object be deleted
and the agent application program that owns the object allows it to be deleted. In
general, these are the steps that are followed:

1. The manager application program issues the CMIP delete request for an object.

2. CMIP services sends an ROIV message to the agent application program that
owns the object.

3. The agent application program sends the MIB.DeleteResponse with a result
code of 0 to CMIP services.

4. CMIP services sends MIB.Delete with an action code of 0 to the agent
application program.

5. The agent application program uses the MIBSendCmipResponse to return the
CMIP delete response to CMIP services.

6. CMIP services sends an RORS to the manager application program containing
the application program’s delete response.

7. CMIP services sends the API_TERMINATE_INSTANCE to the deleted object.

Rejecting the delete request

In this situation, a manager application program requests that an object be deleted
and the agent application program that owns the object rejects the delete request.
In general, these are the steps that are followed:

1. The manager application program issues the CMIP delete request for an object.

130 2z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

2. CMIP services sends an ROIV message to the agent application program that
owns the object.

3. The agent application program sends the MIB.DeleteResponse with a result
code of 1 to CMIP services.

4. CMIP services sends an ROER to the manager application program.
Subtree managers might receive deletes that were not scoped specifically to the

subtree manager object but that might apply to an object under the subtree
manager. The subtree manager must perform delete processing with its objects.

Chapter 9. Create and delete requests 131

132 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

Chapter 10. VTAM-specific requests and responses

The following VTAM-specific requests and responses are accepted and processed
by VTAM CMIP services. The requests are sent by the MIBSendRequest function.
The responses are sent from CMIP Services to the application program. These
requests and responses allow the application program to perform certain actions
that are specific to VTAM CMIP services, such as:

* Subscribing to association information

* Registering an application entity title

* Starting associations

* Ending associations

* Getting association information

* Creating a dedicated association

Here are the requests and responses:
* ACEF.Subscribe

* ACF.UnSubscribe

* ACFRegisterAE

* ACF. Associate

¢ ACEFERelease

* ACFAbort

* ACFE.GetAssociationInfo
* ACF. AssociateRsp

* ACEFE.SubscribeRsp

* ACEFE.SubscribeMess

* MIB.GeneralRequest

* MIB.GeneralResponse
¢ MIB.GeneralError

* MIB.ServiceError

* MIB.ServiceAccept

* MIB.RegisterAccept

In the following sections, please note that the example strings are divided across
multiple lines for legibility only. The actual strings being sent must be continuous.

Subscribing to association information

The ACESubscribe and ACFE.UnSubscribe strings cause CMIP services to notify an
application program when the state of an association changes. These strings are
used only when an application program depends on maintaining a connection with
another application program. Because associations are automatically started when
they are needed, these strings are used infrequently.

Syntax for the subscription strings

The following strings relate to subscribing to associations:
* ACESubscribe

* ACFEUnSubscribe

* ACFESubscribeRsp

* ACESubscribeMess

The syntax for each string is shown here. Notice that the same response string,
ACEFESubscribeRsp, is used for both the ACE.Subscribe and the ACF.UnSubscribe

© Copyright IBM Corp. 1995, 2008 133

strings. Zero on the ACFE.SubscribeRsp string indicates success; nonzero response
values are in[Appendix A, “C language header file (ACYAPHDH),” on page 229.|
For a distinguished name, either the full name or an abbreviated version can be
used. The error code 803 indicates that the association does not exist.

Subscribe ::= CHOICE {

ae-title TitleType,
association [2] IMPLICIT HandleType

UnSubscribe ::= CHOICE {
ae-title TitleType,
association [2] IMPLICIT HandleType
1

TitleType ::= CHOICE {
oi [0] IMPLICIT OBJECT IDENTIFIER
dn [1] IMPLICIT DistinguishedName
}

HandleType ::= PrintableString (SIZE(1..36))

When the state of an association changes and an application program has
registered to receive notification of changes through the ACF.Subscribe string, an
ACEFESubscribeMess string is sent to that application program:

SubscribeMess ::= SubscribeState

The ACESubscribeMess syntax does not include the handle of the association
whose state has changed. That can be found in the src field of the string header.

In the list of ACE.SubscribeState values, the following values have meaning:
* associated (means the association is established and running)
* terminated (means the association is ended).

The idle state is a temporary initial state. The wait-a-.... states are transitional
states. The wait-a-assoc-... states indicate that a new association is in the process
of being established. The wait-a-rel-... states show that an existing association is
in the process of being terminated.

SubscribeState ::= INTEGER {

idle (0),
wait-a-assoc-rsp (1),
wait-a-assoc-ind (2),
wait-a-assoc-cnf (3),
wait-a-rel-rsp (4),
wait-a-rel-cnf (5),
associated (8),

wait-a-rel-cnf-indicator (9),
wait-a-rel-rsp-responder (10),
terminated (11)
}

Examples of subscription strings

ACF.Subscribe (association 'a2')
ACF.SubscribeRsp 803

ACF.Subscribe (ae-title (dn
(RelativeDistinguishedName (AttributeValueAssertion
(attributeType 1.3.18.0.2.4.6, attributeValue NETA)),
RelativeDistinguishedName (AttributeValueAssertion
(attributeType 2.9.3.2.7.4, attributeValue (name SSCP1A))),
RelativeDistinguishedName (AttributeValueAssertion
(attributeType 1.3.18.0.2.4.12, attributeValue MYAENAME))))

134 z/0S V1R10.0 Comm Svr: CMIP Services and Topology Agent Guide

ACF.SubscribeRsp 0

ACF.UnSubscribe (association s7B1920)
ACF.SubscribeRsp 0

ACF.UnSubscribe (ae-title (dn "1.3.18.0.2.4.6=NETA;2.9.3.2
.7.4=(name SSCP1A);1.3.18.0.2.4.12=0SISMASE"))
ACF.SubscribeRsp 0

ACF.SubscribeMess 8

How the subscription strings are used

To establish a subscription:

1. An application program builds an ACF.Subscribe string and sends it to CMIP
services.

2. CMIP services registers the subscription and returns an ACFE.SubscribeRsp
string to indicate the success or failure of the subscription.

3. When the state of the association changes, CMIP services sends an
ACF.SubscribeMess string to the application program containing the new state
of the association.

To terminate a subscription:

1. An application program builds an ACF.UnSubscribe string and sends it to
CMIP services.

2. CMIP services deletes the subscription and returns an ACE.SubscribeRsp string
to indicate the success or failure of the deletion. An ACF.SubscribeRsp string
that indicates success does not mean that a subscription did exist.

Registering an

application entity

The ACERegisterAE request is used to register an explicit application entity with
CMIP services. This function can be used if an application program needs to be its
own application entity. In general, application programs do not need to use this
function. The default local application entity handles all of the application program
strings for an association.

An application program must register as its own application entity, if:
¢ The application program is going to create EFDs.

* The application program needs to request a dedicated association. For a
description of how to create a dedicated association, refer to

[dedicated association” on page 140.|

Any application program can register an application entity, but only one
application program can register any particular application entity. For example,
application programs A and B can each register application entities A" and B’, but
application program B cannot register A" once it has already been registered by
application program A.

Any application program can register multiple application entities, but multiple
application programs cannot register the same application entity.

Once an application entity has been registered, any associations that are remotely
initiated specifying the application entity as the destination of the association are
associated directly with the application program that registered the application
entity. Any strings that do not include targeting information, such as events, are
sent to the application entity directly.

Chapter 10. VTAM-specific requests and responses 135

The ACERegisterAE request can be used to create an application entity that
represents a single application program on CMIP services. This string can be useful
if the application program needs to receive event reports directly from other
systems.

Syntax of the registration strings

The ACFERegisterAE request is used to register an application entity.

The syntax for each string is shown here.
RegisterAE ::= TitleType

TitleType ::= CHOICE {
oi [0] IMPLICIT OBJECT IDENTIFIER
dn [1] IMPLICIT DistinguishedName
1

RegisterRsp ::= INTEGER {
success (0),
not-accomplished (1)

}

Examples of RegisterAE strings

The second example, identical to the first, fails because an application entity name
can be registered only once by each instance of CMIP services.
ACF.RegisterAE (dn "1.3.18.0.2.4.6=NETA;2.9.3.2.7.

4=(name SSCP1A);1.3.18.0.2.4.12=MYAENAME")
MIB.ServiceAccept()

ACF.RegisterAE (dn "1.3.18.0.2.4.6=NETA;2.9.3.2.7.
4=(name SSCP1A);1.3.18.0.2.4.12=MYAENAME")
MIB.ServiceError(resultCode 827)

How the registration strings are used

To register an application entity title:

1. An application program builds an ACFE.RegisterAE request and sends it to
CMIP services. CMIP services adds the identification of the source of the string,
as with any other string.

2. CMIP services adds the application entity title to the list of supported local
application entity titles and sets up communication so that local strings
destined for this application entity take the same short path (with no encoding
or decoding performed) as the local strings that are sent to the default local
application entity.

3. CMIP services associates the name of the instance with the application entity
being registered. This information is added to strings that arrive on associations
with the application entity by CMIP services.

4. CMIP services responds to the instance indicating that the application entity
has been registered.

Starting associations

136

The ACE Associate string causes CMIP services to start an association explicitly on
behalf of an application program. In general, this string is not needed.

The ACE Associate string can be used to establish a dedicated association for
application programs that require them. For a description of how to create a
dedicated association, refer to [‘Creating a dedicated association” on page 140

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

Syntax of the associate strings

The following strings relate to starting an associations:
* ACF Associate
* ACF. AssociateRsp

The syntax for each string is shown here.

Associate ::= SEQUENCE {
targetAE TitleType,
securityInfo OCTET STRING OPTIONAL
1

TitleType ::= CHOICE {
oi [0] IMPLICIT OBJECT IDENTIFIER
dn [1] IMPLICIT DistinguishedName
1

Examples of the associate strings

The example that includes the MIB.ServiceError string shows what happens when
the target system is not connected: no association can be established.
ACF.Associate(targetAE (dn "1.3.18.0.2.4.6=NETA;2.9.3.2.

7.4=(name SSCP1A);1.3.18.0.2.4.12=MYAENAME"))
ACF.AssociateRsp (handle aF)

ACF.Associate(targetAE (dn "1.3.18.0.2.4.6=NETB;2.9.3.2.
7.4=(name SSCP1A);1.3.18.0.2.4.12=0SISMASE"))
MIB.ServiceError(resultCode 817)

How the associate strings are used

When an application program sends an ACF.Associate string to CMIP services and
the application program has already issued the ACF.RegisterAE request, a
dedicated association is created. For information about a dedicated association,
refer to [“Creating a dedicated association” on page 140

When an application program sends an ACF.Associate string to CMIP services and
it has not issued registerAE, a default association is created.

A default association and an association created automatically by CMIP services
share the following characteristics:

* Both types of associations can be automatically selected by CMIP services.

* Any application program can destroy the association.

* The association is automatically destroyed by timing out if it is not used.

To establish an association:

1. An application program builds an ACF.Associate string and sends it to CMIP
services.

2. CMIP services initiates an association with the desired application entity and
returns the newly assigned association handle for the association.

Ending associations

In some cases, an application program knows that an association should be ended.
The ACERelease and ACFE.Abort strings indicate that an association should be
ended gracefully (ACERelease) or abruptly (ACF.Abort). The ACERelease string
ensures that all pending messages have cleared before the association is ended.

Chapter 10. VTAM-specific requests and responses 137

If the association is ended successfully, the MIB.ServiceAccept string is sent. If the
association is not ended successfully, the MIB.ServiceError string is sent. For
descrii tion of these strings, refer to [‘Requests and responses with the MIB prefix”|

Syntax of the ACF.Release and ACF.Abort strings

The following strings relate to ending associations:
* ACFRelease
¢ ACFAbort

The syntax for each string is shown here.
Release ::= SEQUENCE {HandleType}

HandleType ::= PrintableString (SIZE(1..36))

Abort ::= SEQUENCE {HandleType}

Examples of the ACF.Release and ACF.Abort strings

Note that the example that includes the MIB.ServiceError string has an extra right
parenthesis.

ACF.Release (a4))
MIB.ServiceError(resultCode 345,resultMessage "msg ACF.Release (a4))"

ACF.Abort (a8)
MIB.ServiceAccept()

ACF.Release (s17B1440)
MIB.ServiceAccept()

How the ACF.Release and ACF.Abort strings are used

An application program sends either an ACFE.Release or ACF.Abort string
containing the identification of the association to be ended. If the association exists,
it is ended. CMIP services sends the ACF.AssociateRsp string to the application
program.

Getting association information

138

In some cases an application program needs to learn about an active association.
An application program can request a number of items corresponding to a specific
association. CMIP services returns values for the following attributes:

* state

* partner-AE-title

* securitylnfo

* peerAuthenticationPerformed

Syntax of the GetAssociationinfo string

The ACEGetAssociationInfo string gathers information about an active association.

This syntax for each string is shown here.

GetAssociationInfo ::= SEQUENCE {
handle GraphicString,
info BIT STRING {

state (0),
assoc-handle (1),
sess-handle (2),
partner-AE-Title (3),

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

application-context (4),
presentation-context-def-Tist (5),
securityInfo (6),
peerAuthenticationPerformed (7),
1

1

AssociationInfo ::= SET OF InformationPair

InformationPair ::= SEQUENCE {
label GraphicString,
value GraphicString

}

Examples of the GetAssociationInfo string

The first example includes the MIB.ServiceError string because the message did not
specify as many zeros or ones as there are bits in the bit string.

The remaining examples show successful use of ACE.GetAssociationInfo.

ACF.GetAssociationInfo(handle 'al', info 00010)
MIB.ServiceError(resultCode 804)

ACF.GetAssociationInfo(handle al, info 00000000)
ACF.AssociationInfo ()

ACF.GetAssociationInfo(handle 'a2', info 00010000)
ACF.AssociationInfo ((partner-AE-Title '1.3.18.0.2.4.6=N
ETA;2.9.3.2.7.4=(name "SSCP1A");1.3.18.0.2.4.12=0SISMASE"))

ACF.GetAssociationInfo(handle 'a3', info 10010000)
ACF.AssociationInfo ((state 8),(partner-AE-Title '1.3.18
.0.2.4.6=NETA;2.9.3.2.7.4=(name "SSCP1A");1.3.18.0.2.4.12=0SISMASE'))

ACF.GetAssociationInfo(handle 's147B290', info 10010011)

ACF.AssociationInfo ((state 8),(partner-AE-Title '1.3.18
.0.2.4.6=NETA;2.9.3.2.7.4=(name "SSCP2A");1.3.18.0.2.4.12=0S
ISMASE'), (securityInfo ""), (peerAuthenticationPerformed TRUE))

ACF.GetAssociationInfo(handle 'aA', info 11111111)

ACF.AssociationInfo ((state 8),(partner-AE-Title '1.3.18
.0.2.4.6=NETA;2.9.3.2.7.4=(name "SSCP2A");1.3.18.0.2.4.12=0S
ISMASE'), (securityInfo A1B2C3D4), (peerAuthenticationPerformed FALSE))

How the GetAssociationInfo string is used

An application program sends a GetAssociationInfo string to CMIP services, filling
in the types of information it requires. CMIP services returns an AssociationInfo
string containing the desired information.

The labels used to identify the information on the response are identical to the
named bits on the request.

The value is the value corresponding to the label. For securitylInfo, the value is
the information passed (if any) from the association partner when the association
was requested. For securityInfo, the value is saved only on the target CMIP
services.

For peerAuthenticationPerformed, the value (on both initiating and target systems)

is 0 if no authentication is performed by CMIP services and 1 if DES-based security
is performed for this association by CMIP services.

Chapter 10. VTAM-specific requests and responses 139

Creating a dedicated association

140

A dedicated association is restricted as to who can use it on the CMIP services that
created the association. A dedicated association has the following characteristics:

¢ It is only used if specifically requested by the application program that sends the
ACEF. Associate string to CMIP services.

* It can only be destroyed by an ACFE.Release or ACF.Abort string from the
application program that sent the ACF.Associate string.

Note: On the other CMIP services, the association is not flagged as dedicated.
Therefore, it can time out or be used by any application program.

In some cases, application programs need to monitor the existence of remote
systems. For example, an application program might need to be aware when a
remote system fails. Having EFDs on that remote system helps only in cases when
actual communication remains intact. If connectivity to the remote system is lost,
the application program might not be notified of the event. If the application
program needs to know that connectivity is lost, the application program can start
a dedicated association to the remote system and monitor it for failures.

Idle CMIP associations are terminated by CMIP services on a regular basis,
according to a timer:

e If limited resources is enabled, the limited resources timer is used.

e If limited resources is not enabled, the CMIP services timer is used. The CMIP
services timer terminates idle associations every 2 hours.

Shared associations, which are those started automatically by CMIP services on an
as-needed basis, are terminated when the timer expires, unless the association is
being used for an outstanding CMIP operation.

Dedicated associations are not terminated on the originating system even if there is
no outstanding work. Note that remote systems, which are those that did not
initiate the dedicated association, are not aware that the association is dedicated.
The remote systems treat the association as shared. The remote systems terminate
the idle association when the timer on the remote system expires.

To prevent associations from being automatically terminated, you can maintain a
never-ending operation on the association. For example, one application program
can be designed to have a special object that never responds to a particular
operation. Another application program can then issue this special operation to
that object, solely for the purpose of maintaining a never-ending operation on the
association.

The application programs can continue to send or receive other operations on that
same association.

In addition to ensuring that the association remains active, an application program
can monitor an association by subscribing to it. When an application program
subscribes to an association, the application program is notified if the association is
terminated. For a description of how to subscribe to an association, refer to
[“Subscribing to association information” on page 133.]

To create a dedicated association, an application program must do the following:

* Register an application entity (AE) title. Refer to [“Registering an application|
[entity” on page 135 for more information.

z/0S VIR10.0 Comm Svr: CMIP Services and Topology Agent Guide

* Establish an association with the remote system as the target application entity.
Refer to[“Starting associations” on page 136|for more information.

* Subscribe to the association. Refer to [“Subscribing to association information” on|

for more information.

Requests and responses with the MIB prefix

The following requests and responses are described in this section:
¢ MIB.GeneralRequest

* MIB.GeneralResponse

¢ MIB.GeneralError

* MIB.ServiceError

* MIB.ServiceAccept

* MIB.RegisterAccept

MIB.GeneralRequest, MIB.GeneralResponse, and
MIB.GeneralError

These messages are built on behalf of the application program by the
MIBSendCmipRequest and MIBSendCmipResponse functions. An application
program does not build them and an application program will not receive them.
They appear in buffer traces of application programs that call the
MIBSendCmipRequest or MIBSendCmipResponse functions.

MIB.ServiceError

The MIB.ServiceError message is sent to an application program from CMIP
services when a request or response from the application program cannot be
processed for some reason. Some example reasons are parsing errors in the request,
network errors trying to reach the destination object, or memory allocation errors.

For some types of errors, additional information will be provided in the optional
resultMessage section of the ServiceError SEQUENCE.

Here is a sample ServiceError as received by an application, including the APIhdr:

03000000 00030017 00000003 00000001 L *
2FAA7B32 013D0000 00000000 00000001 L *
94A28740 DACI9C24B E28599A5 898385C5 *msg MIB.ServiceEx
99999699 4D9985A2 A493A3C3 96848540 xrror(resultCode *
F3F1F76B 9985A2A4 93A3D485 A2A28187 *317,resultMessag=
85407FA4 948595A3 404DF24B F94BF34B xe "ument (2.9.3.x
F24BF34B F1F36BCO 91D08586 86D48195 *2.3.13,.j.effMan~*
81878584 D6829185 83A3C995 A27F5D00 xagedObjectIns").x

The position of the string where parsing stopped is delimited in the portion of the
original message byX'C0' and X'D0'. In this case, the character pointed out is j of
jeffManagedObjectInstance. This label should instead be
baseManagedObjectInstance.

MIB.ServiceAccept

The MIB.ServiceAccept message is sent to an application program from CMIP
services when the application program sends an unconfirmed CMIP request or a
CMIP response. Its purpose is to notify the application program that the request or
response was processed correctly.

Here is a sample MIB.ServiceAccept as received by an application program
including the APIhdr:

Chapter 10. VTAM-specific requests and responses 141

02000100 00030011 00000001 00000001 Lo *
2FAA54E5 00000000 00000000 00000001 Lo *
A2998360 A3A89785 40F16B40 A2998340 xsrc-type 1, src *
81F16B40 94A28740 DAC9C24B E28599A5 *al, msg MIB.Servx
898385C1 83838597 A34D5D00 *iceAccept(). *

MIB.RegisterAccept

The MIB.RegisterAccept message is sent to an application program from CMIP
services when an object is successfully registered by that application program.

An object can be successfully registered even if one or more items in the
allomorphs list or create handler list cannot be processed. In this case, information
about allomorphs or create handler failures will be in the MIB.RegisterAccept
message.

Here is an example MIB.RegisterAccept as received by an application program
including the APIhdr:

01000000 00030018 L. *
00000003 00000001 2FAA7CF4 00000000 [@4....*
00000000 00010000 A2998360